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Isoperimetric Inequality: Its Origin,

Proof and Development

Li Xuanyu

Abstract

In this paper, we discuss the isoperimetric inequality. We will first give the proof
of isoperimetric inequality on R?, then list the results of general cases, including
the isoperimetric inequality on higher dimensional Euclidean spaces, manifolds with

positive curvature and minimal submanifolds.

The Isoperimetric Inequality on Euclidean Spaces

1.1 Plane Case

From ancient Greece on, people had been long considering the following problem:

Of all plane closed curves with equal perimeters,

which one bounds the largest area?

For example, Zenodorus' knew a circle has greater area than any polygon with the same
perimeter. His work was summarized in Pappu’s? Collection. Although the circle is the
obvious answer to the problem, no one knew how to prove it for a long period. One reason
was that everybody assumed the answer was correct since it was too obvious, just as the
fundamental theorem of algebra. Another reason was that without calculus, it would be

hard to talk about the area of arbitrary domain.

The first progress was made by Steiner® in 1838. By following argument, he showed
that the only possible solution was circle[4]:
(1) If a domain is not convex, then there is a convex domain with same perimeter but
greater area;
(2) If a domain is not symmetry, then we can find a symmetry domain which has same
perimeter but greater area.
However, Steiner’s proof was flawed. Weierstrass* pointed out that Steiner only showed
the UNIQUENESS of the solution, but he did not prove the EXISTENCE. Weierstrass
further constructed a counterexample. Later in 1879, by his original variational method,

Weierstrass gave out the first rigorous proof of the isoperimetric inequality|[5].

After Weierstrass, numerous proofs of the isoperimetric inequality was found. For

example,in 1901 Hurwitz® proved it by Wirtinger’s inequality[6]. It is said that there are

EHEERE: 5, 2019 FHCEREERE, MIFH: lixuanyuOmail.ustc.edu.cn.
FafHEE: 3 H 17 HKR, 4 4 26 HE—XE, 5 H 18 HEZ. Rl REMH.
1 About 200-140 BC.
2 About 290-350 AD, Greek mathematician.
3Jacob Steiner, 1796.3-1863.4, Swiss geometer.
4Karl Weierstrass, 1815.10-1897.1, German mathematician, known for establishing formal definitions of calculus.

5 Adolf Hurwitz, 1859.3-1919.11, German mathematician, known for studies of Riemann surfaces.
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<

) Flip to get a convex domain which has greater area. (b) Tilt to get a symmetry domain with greater area.

Kl 1.1: Steiner’s argument. Source: Wikipedia

more than 100 different approaches to the isoperimetric inequality®. Here we give another
proof which was found by Schmidt”in 1943[7].

Theorem 1.1. Suppose C is a simple closed curve with length L, and A is the area it

bounds, then
2> 4nA.

Moreover, the equality holds if and only if C is a circle.

Proof. We enclose C between two parallel lines / and I’, such that C lies between [ and [
and is tangent to them at the point P and P’ respectively. Then construct a circle C tangent
to [,1I" at Q, Q' respectively. Denotes its radius by r and take its center to be the origin of

a coordinate system. See figure 2.

I P LQ

1.2: Curve C and C.

Let 7(s) = (x(s),y(s)),0 < s < L be a parameterization of C, parameterized by arc
length. Take s such that P, P’ have parameter s = 0, sy respectively. Suppose 7 = (x(s), y(s))

is a parameterization of C, such that

The area bounded by C is A = /dey = fOL xy’ds. The area bounded by C is A = 7r? =
- /c' ydx = — /OL yx'ds. Adding these two equations, we have

L L
2VnAr < A+nr? = / (xy" = yx')ds < / V(x2 +32)(y2 +x2)ds = Lr, (1.1)
0 0

6Said prof. Zhang Xi, in his differential geometry class.
"Erhard Schmidt, 1876.1-1959.12, German mathematician, the Gram-Schmidt process in linear algebra is named after

him.
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since x2 + y2 = r? and x’?2 + y’2 = 1. We have proved the isoperimetric inequality.

Now, suppose the equality holds. By the condition of first inequality in (1.1), we have
A = nr? and L = 2zr. Moreover, by the second inequality in (1.1), we have x/y’ = —y/x’ =

+4/x2 +y2/4/x’2+y"2 = +r. In particular, x = +ry’. At last, we exchange the x-axis and

y-axis to get y = 2rx’, hence

1.2 Higher Dimensional Cases

The isoperimetric inequality can be also generalized into higher dimensional Euclidean

spaces. In this case, the isoperimetric inequality is written as

1 n-1
n

|0D| > n|B"|*|D| ", (1.2)

where | - | denotes an appropriate dimensional measure of a set. For example, |0D| denotes
the (n — 1)-dimensional measure of dD. And B” is the unit ball in R" centered at origin, D
is a compact domain in R".

At first, mathematicians proved (1.2) under some assumption on the dD. For instance,
Schmidt proved (1.2) when D was rotationally symmetric in 1949[8] and Hadwiger® when
dD was smooth in 1957[9]. The most general case, say, D and dD are only measurable, is a
corollary of Brunn-Minkowski inequality. This work was a milestone in geometric measure
theory and was done by Federer in 1969[10]. USTC graduate Cao Hongyi gave a detailed
proof of the Brunn-Minkowski inequality in the Warming, vol. 64. We give another approach
to (1.2) below, which depends on the solvability of Neumann problem and hence requires
dD to be smooth. It was given by Cabré in 2008[11].

Theorem 1.2. Suppose D is a bounded domain in R™ with 0D smooth. Then
|0D| > n|B"|*|D|"+ .
Moreover, the equality holds if and only if D is a ball.

Proof. Consider the Neumann problem on D:

aD| -
Aqu in D,

ou _
%—1 on 0D.

where n denotes the outer normal vector of dD. /D Au= [ g—; ensures the existence of u.

Consider the lower contact set of u, defined by
T, :={x € Dlu(y) > u(x) + Vu(x) - (y —x),Vy € D}.

Geometrically speaking, I', is the set of all points x such that the tangent space of u in x
lies under the graph of u. As a result, u is convex on I',.
Next we prove B" c Vu(I',). In fact, take arbitrary & such that |£] < 1. Consider

w(x) = u(x) — (&, x). g_v]; =1-(&,n) >0 on dD, hence w cannot attain its minimum on dD.

8Hugo Hadwiger, 1908.12-1981.10, Swiss mathematician.
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Suppose x € D satisfies w(x) = inf; w. Then from Vw(x) = 0 we get £ = Vu(x) and from
w(y) = w(x),Vy € D we get X € T,.
As a result,
|B"| < |Vu(T,)| < / det D?u.

Iy
Since u is convex on I,, the eigenvalues of D?u are positive on I',. Apply geometric-
arithmetic mean inequality to these eigenvalues, we get

e (%) ()" (1001
= n “\n ] “\nb|]

oD[\" oD|\" oD|\"
|Bn|</ (I I) :(I I) IFuI<(| I) D
r, \n|D| n|D| n|D|

as we want. If the equality holds, then I', is dense in D by |I',| = |D|. Similarly B" is dense

in Vu(T',). However, T, is closed, so I', = D, then Vu(D) = B" which means |Vu| < 1 on D.

Since the mean inequality is a equality on T, we have D?u = Al on T, = D, where A = %.

Hence

As a consequence, u = A|x — xo|?/2 + ¢. Putting these facts together, we get
D c {x:|0D||x —xo| < n|D|}.

Compare the volume of the both side, we know they are actually the same set, which means
D is a ball. O

It is worth mentioning that this method, say, proving isoperimetric inequality via elliptic
equations and lower contact set, is so-called ABP method. Trudinger first used this idea
to prove the isoperimetric inequality by applying ABP estimate to the following Monge -
Ampere equation[12]:

det D%u = yp in  Bg,
u=20 on OBg.

ABP method is powerful in proving some geometric inequalities. Later in 2016, together
with Ros-Oton and Serra, Cabré proved a weighted isoperimetric inequality in Euclidean

space[13]. Besides these results, we will mention ABP method again in the next section.

Isoperimetric Inequality on Manifolds

2.1 A Domain in the Whole Space

Isoperimetric inequality can be also generalized to domains in manifolds. For 2-
manifolds, or, surfaces, Bernstein® first found that[14] if C is a convex curve on a sphere of

radius R, then

A2 d
L?> —4nA+ — > (2Rg(R))*(2 R)?),g(R) =sin | —-—
RA+ 2z > CRe(R)A 2+ 2(R)).2(R) =sin | 1 ).
where L is the length of C, A is the area of convex domain bounded by C and d is the

minimum width of circular annuli on the sphere containing the given curve.

9Felix Bernstein, 1878.1-1956.12, German mathematician, known for proving the Schréder - Bernstein theorem(if
card(A) < card(B) and card(B) < card(A), then card(A) = card(B)).
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However, the isoperimetric inequality cannot always take the form L? > 47A on a
general surface.

First, since a circle on a sphere satisfies L? = 47A — A2/R?, one should not expect
L? > 47 A holds for all curves on a sphere. In fact, Beckenbach!® and Radé!'! showed that if
L?—47A > 0 holds for all simply connected domains on a surface, then the Gauss curvature
of this surface must be non-positive[15]. So there should be some relationship between the

isoperimetric inequality on a surface with its curvature.

T

A

- ——
- -

(a) A circle on a sphere. (b) A cylinder.

1.3: Two counterexamples where L? > 41 A does not holds.

On the other hand, consider a cylinder(where Gauss curvature K=0) with radius r and
height h. Its boundary circles have total length 477 and its area is 2znrh. Thus the area
can be made arbitrary large by increasing h, while the total boundary length remains fixed.
As a result, if we drop the simple connectivity, then L? > 47A does not hold for general

domains on surfaces even if K < 0.

Now let us state the final version of the isoperimetric inequality on surfaces. It was
found by Ionin in 1969[16].

Theorem 2.1. Let D be a domain on a complete surface. Suppose D has area A, Fuler
characteristic x, and length of boundary L. For any real number A, let w} = fD(K - s,

where K is the Gauss curvature. Then
L? > 2(2ny — wh)A — 1A%,

Next, let us turn to higher dimensional cases. This time, we have the famous Lévy!2-
Gromov'? inequality, which was proved by Lévy for convex hypersurfaces in Euclidean space
in 1922[17] and later by Gromov for general cases in 1980[18]..

Theorem 2.2. Suppose M is a n-dimensional closed manifold, D C M is a compact domain
with smooth boundary 0D. Suppose Ricy; > K > 0, where K is a constant. Let S be a n-
dimensional sphere with constant Ricci curvature K, and B be a spherical cap in S such

that
|D| _ |B]
M| IS]
Then
|0D| _ |0B]|
—_— .
M|~ IS
1OEdwin Ford Beckenbach, 1906.7-1982.9, American mathematician, led the development of the graduate program in
mathematics in UCLA.
HTibor Radd, 1895.6-1965.12, Hungarian mathematician.
12Paul Lévy, 1886.9-1971.12, French mathematician, introduced some fundamental concepts in probability theory.

13Mikhael Gromov, 1943.12-, Russian-French mathematician, had many revolutionary contributions to geometry.
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If we take M = § and let K — 0, then the inequality goes back to the usual isoperimetric

inequality in Euclidean spaces.

Theorem 2.2 is a corollary of Lévy-Heintze-Karcher comparison theorem, which bounds
the Jacobian determinant of the exponential map in a manifold with sectional curvature
bounded below by that in a constant sectional curvature manifold[19]. Based on optimal
transport and needle decompositions, Klartag gave an alternative approach to Theorem
2.2[20]. This method was generalized to metric measure spaces by Cavalletti and Mondino
in 2017. They showed that if (X, d) is a metric space with Borel probability measure m and,
roughly speaking, X has n-dimensional Ricci curvature bounded below by K > 0, then for

every Borel set E C X, we have

0B
m*(E) > u (2.1)
|S|
where B, S is same as that in Theorem 2.2.
E¢) —m(E
m(E) = lim inf m(E?) - m(E)
e—0t &

denotes the Minkowski content of £ and E¢ = {x € X : Jy € E,d(x,y) < &} is the &-
neighborhood of E. If X is the manifold in Theorem 2.2 and m is the normalized volume
measure of M, then (2.1) goes back to Lévy-Gromov inequality.

2.2 Minimal Submanifolds

There are various studies of isoperimetric inequality on minimal submanifolds as well.
Recall that if we denote the standard connection on R” by D, then the second fundamental
form of a submanifold X ¢ R” is defined as II(X,Y) = (DxY)*, where X,Y are tangent vector
fields to X. The mean curvature vector of Z, denoted by H, is defined as the trace of . £

is called minimal if and only if H =0 on X.

In 1921, Carleman'* proved that every two-dimensional simply-connected minimal sur-
face in R" satisfies a sharp!® isoperimetric inequality L? > 47A[22]. Carleman’s result is a
natural consequence by observing the following fact. Denotes the position vector in R" by

x. If ¥ is an arbitrary submanifold in R, then
Asx = As(x1,...,x,) = H(x),Vx € X.

This means that if £ is minimal, then the coordinate functions on X are harmonic. Moreover,
if ¥ is simply connected, then these coordinate functions can be defined on the unit disk
in R? = C. As a result, we can use the technique from complex analysis to get the desired

estimate.

But this result was not satisfying. A simple closed curve in R* may bound a minimal
surface with higher genus. Besides, a minimal surface can have disconnected boundary. On
the other hand, although we showed that L? > 4rA did not hold for all surfaces, we still
believe it should hold for all minimal surfaces. This is because an argument shows that
L? > 4rA is valid for all area-minimizing submanifolds and the area-minimizing property

inspires the definition of the minimal submanifold[28].

After Carleman, many attempts were given to weaken the topological assumption in

Carleman’s result. For example, a sharp isoperimetric inequality for minimal surfaces with

M Torsten Caleman, 1892.7-1949.1, Swedish mathematician.
15 A sharp inequality means that we can determine when will the equality hold, and non-sharp means that the equality

never appears.
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connected boundary[23] and for doubly-connected minimal surfaces[24]. Here we give a brief
proof of the case where the boundary is connected. This proof was given by Li'¢, Schoen!”
and Yau'® in 1984[25].

Theorem 2.3. Suppose ¥ is a minimal surface in R" with boundary connected. Let L be
the length of 0%, A be the area of Z, then

2> 4rxA.

Proof. Let r(x) = |x|, then
Asr? = Z Asx? =2 (xiAsx; + |Vx;?) = 4.
i=1

Translating S suitably, we may assume faz x; = 0,Vi.By VEr = xT /r and Wirtinger’s inequal-

ity, we have

d . - 1 dx;
4A=2/r—r<2/r<2L2/Z? —L3/Z(x) L2,
o 0N ax 9z = 4 ax
where i denotes the outer co-normal to dX and s is the arc length parameter of 9. O

With some extra arguments, the above proof can in fact derive the equality for those

surfaces with two boundary components.

There were also some non-sharp isoperimetric inequalities established for all minimal
surfaces. Leon Simon showed that L? > 27A holds for all minimal surfaces. This result
was never published. Simon’s argument follows the proof of Theorem 2.3. Set r(x,y) =
|x = y|,x,y € R". Again we have Afr? =4 and VZr = (x—y)” /r, where (x —y)” is the tangent
part of x — y at point x. As a result, we get

—_

2 L1
Alogr = (- IVrl?) > 276, Ajr = —(2- IVir?) > >

Integrating x, y over X respectively, we have

1
27r<‘/A§logrdy</ 1_or dO'(y)</ do——(y),VxEZ,
b as T On(y) oz T

1 or
—dx < /Axrdx =/ do(x).
/z r b > oz On(x)

Hence integrating the first inequality for x over ¥ yields

2mA < -/2/62 %da‘(y)dx = /ﬂfzédxd(f(y) < /az /az %do-(x)do-(y) < L?

Stone improved Simon’s proof in 2003[26]. By exchanging x, y in

and

onA < /a 2 /a 0r/on(x)de (x)do (),

then adding up, he derived L? > 2V2A.

6Peter Li, 1952.4-, American mathematician.
17Richard Schoen, 1950.10-, American mathematician, known for the resolution of the Yamabe problem.

18Everybody knows who he is.
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In higher dimensions, we have the famous Michael-Simon Sobolev inequality[27]. This
inequality is of the type

n

( / f) "<, / (IVE£| + fIH]), (2.2)
> >

where X is a n-dimensional submainfold in R™*! and f is a compactly supported positive

function on X. Taking f =1, we get a non-sharp isoperimetric inequality of minimal hyper-

surfaces in R"!. In 2010, Castillon improved the constant in (2.2) via optimal transport[29)].
Recently, Brendle generalized (2.2) into arbitrary codimension settings.

Theorem 2.4. Suppose X is a compact n-dimensional submanifold of R™™ with boundary

0%, m > 2. Let f be a positive smooth function on X, then

JVEFE T A S (W)( ) ,
[N PIER [ 750 [1 (23)

m|B™|

Moreover, if m = 2 and the equality holds, then f is constant and X is a flat round ball.

Since we have the induction formula (n + 2)|B"*?| = 2|B?||B"|, (2.3) implies a sharp

isoperimetric inequality for compact n-dimensional submanifolds in R™*2:

n-1

0| > n|B"|7|Z| "

We can always embed R into R"*2, so it also provides a sharp isoperimetric inequality in

codimension 1.

Let us sketch the main ideas in the proof of Theorem 2.4. Brendle was inspired by

Osserman’s work, say, Theorem 1.2.

Sketch of proof. We only consider the case where X is connected since the disconnected one

can be easily derived from the connected one. (2.3) is homogeneous. Scaling, we can assume

J NPT [ pen [ g

This normalization ensures the existence of the solution to the Neumann problem

dive(fVZu) = nf71 —/|[VEF|2 + f2|H|? in X,

(VFu,m) =1 on O0ZX.
Consider
Q:={xeX\oX:|V*u| <1},
U:={(x,y) :x€Z\0Z,y e T2, |[VZul® + |y|* < 1},
A= {(x,y) € U: D3u(x) = (L(x),y) > 0},
and a map

®:U - R"™ ®(x,y) = VZu(x) +y,VY(x,y) € U.

First follow the Theorem 1.2, we have ®(A) = B™™. A calculation shows the Jacobian

determinant of ® is

det D®(x,y) = det(D2u(x) — (I(x), y)), ¥(x,y) € U.
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Then, using the mean value inequality, Cauchy’s inequality and the equation of u, we get
0 < det D®(x,y) < f(x)71,V(x,y) € A.
We now apply the change of variables formula to the map ®. For all 0 < o < 1,

|Bn+m|(1 _ O_n+m)

=/ 1dé
{€eRmm . g2<|£]2<1}
</ (/ | det DdJ(x,y)llA(x,y)dy) dvol(x)
Q {yeTtE:02<|P(x,y)|?2<1}
</ (/ f(x)"”ldy) dvol(x)
Q {yeTEE:02<|VZu(x)|2+]y|2<1}
1871 [ (1= 19500 - (0 - 1P P E o
Q
Since m > 2, we have b? —a? < 2(b—a) for all 0 < a < b < 1. Hence
(1= IVu@P) % = (0 = Va0 P)E < 20 = V@) - (02 - VP < 20-0%).

Putting these facts together, we obtain |B""|(1-0™") < Z|B™|(1-0?) /Q fri,V0< o < 1.
Then divide by 1 — o and take the limit as ¢ — 17. This gives

(n+m)|B"+m|<m|Bm|'/fn"1 <m|3m|‘/f,,”1.
Q b

Thus, we conclude that

NPT+ [ = [ o n( SB[

m|B™|

)1.

A year later, by the same idea with much more complicated arguments, Brendle derived

O

some same type inequalities for manifolds with non-negative curvature. He showed that if
M is a n-dimensional complete non-compact manifold with non-negative Ricci curvature, D

is a compact domain in M and f is a positive smooth function on D, then

[rwene [ gz nipiior (/ f) ,
D oD D

where 6 is the asymptotic volume ratio of M,

M :d(p,
g = lim 1PE (p.g) <r}l
r—oo | B |rm

The equality holds if and only if M is isometric to Euclidean space, D is a ball, and f is
constant. Besides, suppose the dimension of M is n+m and M has non-negative sectional
curvature, X is a compact n-dimensional submanifold of M with boundary X and f is a

positive smooth function on . If m > 2, then

-1

(n +m)|B"™| A\
ST [ s (R ) e ) |

If m = 2, the equality holds if and only if M is isometric to Euclidean space, X is a flat round

ball, and f is a constant. These two inequalities provides sharp isoperimetric inequalities

for manifolds with non-negative curvature.
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Further Discussion

As we have seen, there are numerous results on isoperimetric inequality. However, there
are still many related topics on isoperimetric inequality, which are impossible to be included
in this short article. For example, the sharp isoperimetric inequality in R” is equivalent to
the optimal constant in Sobolev’s inequality. Also, isoperimetric inequality is related to
the first eigenvalue of Laplacian. There are many other methods which can be applied
to isoperimetric inequality not mentioned in the previous section. Besides, isoperimetric
inequality has many interesting applications such as the concentration inequality in prob-
ability theory. For these topics, one may refer to [1] or [2]. For more details, readers can
refer to [3].
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=9z

EIAE R EH AR B 80, BUeEA LR BEEERK Uik, 185 RE0E
(BFEIARRE ) @ NI T RS MY, A OB BB —ehig,
I H RSA HVEHIAN-BAEZ L Miller-Rabin 2514 04 45 38 A0 1 A 4 11E B .

MR S1ES

W B A—NEES, H #B Zn KRN ST p,q BFRIREH, o(n) HNEKEL
BREL, BRI [1,n] 5 n RPBEEW AL — D n WTRAB MR 25m, b m 03, T7
S WIRATFR 28 N n 1Y even part, m N n ] odd part. (Z/nZ)* R E S5 n BRI
FIE AN R 42 7 SN A R
EIE 1.1 K n=[],,p" A nFAFTHM, W o) =],.(p-p* .

EIR 1.2. (Z/nZ)" HEFE, S HARY n=2,4,p¢2p¢, £ p RFEFH, e AEZTEHEH.
EIE 1.3, 2—An MAFEF, x° =1 89N EA ged(n,e).

EEE 1.4 (PHEFIREH). & n=T1,,p" BiFEIR WRAAKFE M =b; modp;"
—WE R (b),0<b; <p" HEARA—ANHELOSM<nt§ M R

IR 1.5. #{M? =r modn} =[], #{M? = r mod p*r}.

EIE 1.6 (Fermat). & p AZ%, WA F x4 p, A xP~1 =1 mod p.

EI 1.7 (Euler). % x € (Z/nZ)*, M x¢™ =1 modn.

RSA &4

S TaTE A X RN FAERT RN S . 0% 48 M BH SR % S — AN i (B S S —
A LU Y2 ki E i — ANy, rs T — A28, ROvE Y, RIS = C(WIsg,
), fRE R TR N SR B SR, BASC = DB L, MR, AR N 5 A A o
Fe 1A [E], FRATTHE N s 5245 D9 R A EXTFR s

WER REATHEE (R 57U BRI BE), X FRIN %S 1) — > 3 2 () AR T 3845 XU o]
JLEAE —ANEH (BRI KA. A0 W R 21X M 2= B I E AR BRI AR R
BUK, B AT AN R 77 50 B A A LU ML IpZE: Merkle’s Puzzles [3] Al
Diffie-Hellman #8H5C#t [4]. FHIFZENHEH (& —MEHEMEALHIRIIEH):

(BlAE X7 73 93] 2 Alice A1 Bob)

o Alice 1 Bob Je A FFEFE—ANFE p, F— DX NHTER g.

o Alice 1 Bob & H 7 mlif— b EEE o A b.

o Alice 115 A = g% mod p K% Bob, Bob i B =g” modp K% Alice.

o R¥E (g9)° = (g°)® mod p, Alice fl Bob #tH 1 — M IEREIEFAE N EH.

EE(EE: 15, 2018 HECFFRI b, MIFH: booklightemail.ustc.edu.cn.
FafEE: 3 0 31 HokhE, 4 H 23 O&—kiE, 4 A 25 D2, fftad: o

]
g

=57

A
[EE}
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FREEN R R T 5w g« A g% REH g RIBMER (FEFL p BOUF), IXPEHK
RNE BT B, p TARB—ANHERER AB 2H p-1 Falfg (KA g° modp Xt
1<x<p-1¥AH), B T B igr T ge k.

RTHAEX IR, RSALZHH Tt 1 58 — AN 30 i 2 255 BH R0 i 25 3 B AN [R) 1Ry AR I 2 B3
AV RSA S
(1) EBHANAE I RS p, q.

(2) WH n=pg.e(n)=(p-1(g-1).
(3) IEES o(n) BREMAE e, HEH e KTH o(n) BIIEIT d.
(4) P=(e,n) NI, MENRAHH, S = (d,n) %, /ENREH.
RS, ATUNE BHR — T M(M < n), NS
P(M) = M° modn.
Hrdr P(M) R M XIS, 458 — /NS C, R H Tk
S(C) = C% modn.

Hrp S(C) BRI R IR SC. 58T Wy Rt o S — AN O T80 — M oo EE, 62
EEIN IR RN AT
EI 2.1. RSA ¥ kR EH, Bp (M?)¢ = M) = M modn.

WEER. M 5 p HE (Bl p A% M T, HT ed =1+k(p —1)(g—1), HEE/E
oM = M(MP~YH)kaD) = M modp. & M A5 p HZ, Wl M“ =0= M mod p. FHE
M =M mod g, HHER L ER, M = M modn. ]

RSA 1224l 6 R HEEAT BR 7 2 i P PR HE A DR

LR RILNEEBIERE: A€ (e,n) A (d,n), LA RIS n AT RFE M (FE1E
ARGRIRIE—ANRT n 1 w2 AT B0 — A 2 T I [8] 9 BE 68 58 1, 1R800 Bk LA
R R A D% T 0 22 T (B N RESERR); 45 d < n/4 /3, MIXFEETERT e, TTLAA 24045 2
d;

B4 MY modn FONAVHEFE B X M 11254, AHAT LU 28X M9 mod n 3Lt
IR FE R ISR ZA 4 (1 3 20 A FHFNALEH B i A7 FE S S0 1Y)

blinding ¥ fi: B & MEIRN M %4, A HEVLER— r € (Z/nZ), &
M’ =r°M modn, W M’ WZ4Y5 M 11254 —5

DL JUAN B PR B AR 2 5 B A% T RSA X nl L% [1].

SR

H RSA FIEETT LR, MELESLPRF g RSA 5k (A HARRRZH L) %0
BRI B LL R AL, SRS R BRI EL IS, A4 R 5 77 10 gt e Al A FAH
AT bt a1 e RS 81 K ZR B R AATT Do 1 ) .

o — A E AR e
EIR 3.1, % w(n) A 1B n ZHAEREGANE, U lim, . 20 =1,

n/logn

'Rivest-Shamir-Adleman, 1977. {453 FEBUGHK, — {79 F$2 5K Clifford Cocks £ 1973 “Eh & W 7%k, (AHTH
TEBUREAE T LAE, 4 RAREATF .
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FIRMIEETE n ARIBRIIBHES 1 AR E0E, XEWRE, IR — ik
Fon A 500 LA AT IR AL, R ZEFEALFHRKZ) 300 ~ 400 MERIAT, an st R SR A 5L, 1068
BE—2D U XA B, A4 T SR I Il R A D o B W — AN BOR FA, X AN
FRR A AR

e (] BB R AR R IR W2 ISR HIWT n BB R, RERA LR 2 3 Vi K
(T CASCRIAT, G — UGRBR 0N 0, W n s AR 2AL, S0 o gt R R EL

R RRAE T, IR AN B0 T 07 2 EL ORI BR3P, RIS, oM R —
A kAL, WRER A AT BE AT 282 BIEZOR, W k A 500, XA EH AN
FHAMETFHEZEAZ.

TR A ME AR R B T 2R N e, iR n NERE, AR — AT n (I3
m #A m"! =1 mod n, WHFRA —MNEAWLIXNEX, AT T LLEGEIIAHN n FRERE,
XA IPE N B AR, (BRI E T BT A 1 m #E R XA, ARV n SRR
B, XHFER) n #FRA Carmicheal %0, /M) Carmicheal %52 561.

FEAR B Ty AR AT 2 e DA s AR (R s, (R LR Mokl (Hvr o Kekdh) s T EA N
Miller-Rabin ZHMNRE L, HL4 H—A> 5] B
SIFE 3.2. & p A—ANFEHK, x®=1modp £ p EXTRABEANML 4= -1.

MERR. & x?=1modp, M x? —1=(x-1)(x+1) 22 p MFEE, MLH x+1 5x-1HF—
M p BIEEL Bl x =1 modp 5 x = -1 mod p FH— AL i

T —"NRE p, p-1=2"%k H k Z2—1&H S8 NDT p W m, HEE
mP~' =1 modp, M m? "% =1 mod p B m2 ¥ = -1 mod p H MWL, & m? '* =1 modp
AL, WA m2 7% = 1 modp 8t m? % = -1 modp H AL, Wkdks:, HEHR N
i,m** = =1 mod p WOZ, B m* = 1 mod p, iX{F & Miller-Rabin 5k %0 AL,

Algorithm 1: Miller-Rabin test

Data: — P& E n, —NPNT n BIEEE m

o0 —1 SRR 2k, Horb & HFFRL

5 m? % B AE, WRARE 1, WERE false

fori—1[-1to0do

T m? % B ARE, WRAR 18 n -1, R[] false
WRE n -1 R

end

IR [A] true

W (n,m) BA@EE BRI, WA n 22— NE8, F8m N n A5 —MERE. H
MR F IR n = 561 A, B m = 2, 561 — 1 = 35 x 24,2°° = 1 mod 561,22 =
1 mod 561,20 = 140 mod 561, MM 561 A2 R FiEwFHEEM—MAHMFES: ARE
T+ AR (2,3,5,7,11,13,17,19, 23,29, 31, 37) 347 Miller-Rabin 3R, 5t 7] LAH)
W 264 DAY ) AT o 5 2 AL
EIE 3.3. & n A—AKTF 98FHEH, n=2%, k AHK, i

B= {x € (Z/nZ)" : x* =1 modn or x** = =1 modn for some 0 <i<I }

HMA
#B
¢(n)

<

-
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7 3.4. B ¥89 x BpAAei@ L Miller-Rabin MK 49 (n,x).

WERR. SE¥ n = T1,), pr, B r NlLE 27|(p — 1) XA n KRBT p #RILII RN r.
i
C={xe(Z/nZ)" : x**" = +1 modn}

BAE BcC, Fsz b, #5 x e B, & x* =1 modn, MER x e C, HME x*2' = -1 modn,
A n KRR T p, #H x*¥ = -1 mod p, W x*2™" =1 mod p, & x £ (Z/pZ)* T HIF
Hd, W2 5t d R (k27 2 d IR, B k20 A2 d R, XA d|(p - 1), i
2+ (p-1), Wl i+1<r EIf§ BCC.

A o [ R A B FRAE A, ©F270 = 1 modn HIRIANECR, M 0 ERET p,
X2 =1 mod p% ISR, YT (Z/p%rz)" RIEIHEE, WARIANECN ged((p -
Dprt k271 = ged(p = 1, k)2 (9 p B n, MITAREEERR n— 1, AREEERR k), BHUILE

#{x € (Z/nZ)" : x** " =1 modn} = 1_[ ged(p — 1, k)21

rln
£ x*7 = —1 modn, W x*¥7" = -1 mod p%, W& n WERT p KoL, i x27 =
~1 mod p% Fl x**"" =1 mod p% MIFFERIFFEN x*¥ = 1 mod p ML, R¥E_EiAHE
Je BRI RN T 0 ged(p—1, k)27, MM X2 = —1 mod p fREEKR/INEH [1,, ged(p—
1, k)27 Wi

H#{x € (Z/nZ)" : x**" = -1 modn} = l_[ ged(p —1,k)2771

pln
ESJ ]
#C =2 ]_[ ged(p — 1, k)27
pln
#C ged(p — 1, k)25t
=2
e(n) lp_lnl (p—1Dpert
SeMBBCE B T 1/4. Bk
1 ged(p —1,k)27 1
17 1_[ (p=1p*! ®)

pln

RN ged(p —1,k)27 B2 (p-1)/2, AR EL N 217 1 2 n WRE TS,
<2 =2 BEA a, >2 XED p oL, WHRKEZ N 1/(2+3) = 1/6(FN p 2D
A 3). Bk n = pq, XA

p-1 q-1
27 ged(p — 1,k) or ged(g — 1, k) =
T ged(p—1,k)2" ER (p—1)(p FTLAREL q), e 2UHIW A7 202 B A, PR 2 1,
B p—1=ged(p—-1,k)2", g—1 = ged(g—1,k)2", KN k NEEL, BTbA p—1 Fl g—1 1) odd part
HHELR k, H p—1 F1 g—1 1] even part &B42 27. KN (p—1)(¢—1)+(p-1)+(g—1) = pg—1 = 2'k,
FIEIEATE p—1 B odd part #Bk g — 1, ¢ — 1 #J odd part ¥k p— 1, W\l p =g, TJAE.
R REER =1, W n=pa>2 HMA p* ' <4, B p=3,a=2, X5 n>9 FJE. iE

B ]

2
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PRI, 0T — MR R AT AL n, WERBENLEN m < n 347 Miller-Rabin M, WitfdtAT
Tk kw7, MART LA RAE 1/4F MATRE n 2658 XFEREVEZIET AL, K
N BIRADRIIE A 7> [ 1B, AT AR A B LA S,

AR, XN EEAT LR SREETERAE | TR R
EIE 3.5, o) AR ZFERL, WE n RFSHK, WA 1 2 2(logn)? 210 LRKE—/NH
YEA n ALV,

SERR. % [2]. .

e L, N B S AE AR AL, 4 Miller-Rabin PRI S22 — A 2 T2 8] (1
FUERWREE. H b A B AN R IR B 2 2 TN R] AR R 1 R 1 A R AE
2002 - = ALEEE R 2 KR R (Agrawal-Kayal-Saxena primality test).

B3 3 HR

[1] D.Boneh. Twenty years of attacks on the rsa cryptosystem. 1999. https://www.ams.org/notices/
199902/boneh. pdf.

[2] R.Schoof. Four primality testing algorithms. 2008. https://doi.org/10.48550/arXiv.0801.3840.
[3] Wikipedia. https://en.wikipedia.org/wiki/Merkle%27s_Puzzles.
[4] Wikipedia. https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange.

-Bﬁ% HRIFEHE ¢® modn

B b 3 RN bubyy ... by

Algorithm 2: Binary Exponentiation
let Ci =a modn,Ry =1

fori — 1 to ndo

if b; =1 then
‘ Rl' = Ri—l * Cl' mod n
else
| Ri=Ri
end
Cis1 =C; %« C; modn
end
return R,

E. N TRBERIZE, B RS 5125 AU R RIRs KA G, ARSI, N
TEANEE P A ] KRR M OG AR, SReBR AU U /217 9 2%, S A 22 I3 i)


https://www.ams.org/notices/199902/boneh.pdf
https://www.ams.org/notices/199902/boneh.pdf
https://doi.org/10.48550/arXiv.0801.3840
https://en.wikipedia.org/wiki/Merkle%27s_Puzzles
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange

I 25 BEAA R L KB RE =) iU RS

& A0 de

FEEAETT I 2 T AR T LA, 34T 22 T 1A DR AR I AL & A PR T 4 2 i 7. A
SCREA R LA SR B3R 2 AR, FE I 2 AR A SR, B, 3T
MU T L HE ) R 2 R, JRSIN— AN EEH A2 T H: R, A1
i B E 1R 400 BT 5 %0 I R 2 AR B AL A 5, T4 R 4R AR B AR Rk

TR AN BATVE TR R E SR, BPPYIE 2 Ak IEDU AR, IESHAA, 1IE/\HAK, 1E
R DA OE AR AR ESIAR, R EBA TR A SR BT S — 4%

2, MR RS A I s AMEERA D), ARG S 2wk (B 1.1). i,
AR DUTHARRT B OB A A, 1N AR IR )\ TR B, 1B AR - 1 A B A0 {.

AV

0 R DO K Y EE DA VA LN

P A SR ESLAR (0 RO I RIS, AE L RRAAIE T, RN AONT IR\ AR ) 52 £ R
SN AR, IR AR AN IE AT R R S SRR A AR (] 1.2).

B 120 AR R SR T A

Un R IRAT DR L2 75 RE LRGN XHE AR IF R, BATEERERS BIPIAS R B 22T 4R
(Catalan solid, F7RBIERGELARIIISHLAR): SR+ AR =ik, €A1 %
K& BT PARR 2 AR B (B 1.3).

PEE(E S WAL, 2020 BECFER %P, WiFH: jazengmOmail.ustc.edu.cn.
FatHEE: 3 7 24 FIkR, 4 A 27 AS—kE%, 5 7 4 AR Wi, 5 7 4 2. fatkmig: B,
L ZTAKNR AT S (2, §§ 1-2].
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1.3: ZR+ k5L =ik

Horr) 38+ AR TR AR LN 12 V2 I935], MR Y AMZEE
XS LB A ZE AR IR 4 AT DAL AN+ ik (B 1.4). GERRRI NN A T # 2
R FIZEIE I AT/ HR, £E LR b — AN ST G P A T 1 =M 4LK).

L4: ZEIB+ kR i#

AN, S50 =T PR AR T RO A 2 KB 2 AR B B 4 b 12 18 i AT T LA
I A MZEE TR B EE T AR A — AN SR =T A, H b B SR T AR B A 2R T A
4~ (K 1.5).

\

@@

' % e o @

1.5: R =tmAR M)

AR RGE T A AR — 2648, 85 WS A FIZ M AT IR, REfs K X Le ik DA
KA ZERZETRAR T —1 T (zone), XA NN R TR AR, 228+ ik b —
A VUK EE AT S T2 =k, AW BTN EIRAER, 2E E—IF A
KRR (] 1.6).
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K 1.6 =Mk B3

XA 22 AR (R 8 T A 14 TR EANA AT L HEA (zonohedron). HARXHANZ
T A 70 R AR R, EIRNTZ R 2EM, —MRIPR T 2 T ik bt 2 RN Py #h 2 1 14
FR) 70 i

RS E

HA15e% & — M B FATE A R E A S K. ROV AR T AT DU IA e, Az
—kE, B RE T AR, RN AR TR P A AN G E T AT HARSE L.
[, & — AN AR S G JE T P AR R, TIPSR R 1IN, [ 2
T AR T (R B I, ENE IR 5y N, X AT A 5 A NOZPAT. 2 i ik
Fh b, IR RT MG A A, X PN AT DAL S — AT AT /ST A, SRATTHL AR A 4 g i A

FROTHT, AT AR X AN 0 S 5 2 AT RLANARRST T R de 5, [R]IRE BT A7 50 B e e e b L
AU, XA Z HAEA DS FRIME.

PR RIATIRIL— T 5 H-PAT WA B ™ 2 AR AH G B B R R, WA 2 14k
H n FIAFT AR, BARXAZHE EAREA o AR, 0 T22 0+ s
=R, EAECT 0 4 6. HT RN AR AR 1 — 1 ADNEE WA AL, — A
Wt BILHA 2 (n - 1) AN, NMEANZ R SIEE n(n-1) DAFERE. A, BT
FRMAEA 2(n—1) %, —3FH 2n(n-1) %8, HERRARK, FRAVER] TIXAZ AR
TSH: n(n—1) +2. BFEFLLEATIRUE— T ZHT PN 7.

AR R F—RIE V = (vy,..., v,) € R¥" N—AEEEE (vector configura-
tion), XL EFUEL, V Al M2 HE. R v TESEWA I EALL, JATHK
ZAERN); WRAEE =AM RS, NIRRT —RRALE R, Sr— i E
AU N ERES. TSNS Ac{lL,. .., n} BATE XL AV = (uy,..., uy), Her

Vi, Hi¢A
u; = .
—Vi, %‘l €A

FAFE 4V AV K—AEER. EERTET T AR ER K —NEM LR, BUHERNTATEL
Y, EARZE AN EE R ESCE, — NPT WA B R 2 iR —iE T e T )
MEMFARLEE WAES), ZPMRETHRE - NRESETZHAETH 2(n-1) MIET
T,

Bt R, X —JgRAH 2 — N EEE [ ) ) G B R ME— e R XA 2 AL RATER AU A2
T i) — AN ORI R, IR R8I I ) — A 2 AR A S . FRATTRT DA R B B O ),
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FEAF R () R AR ) SCEE I A, 38Rk, BATTRAT 8 iR

{Z/liv,- 0< A < 1} C R,
i=1

RV & ) B 3R 7R 1 2R B 1 3 i) SR FE AN, &2 2R rp g Py 4R, R R B 2 AR I R — AN TS AR
Al LAV E MO B, T4 R T LA JEAS v; o, AT TS AL bR &R T

/ll’Ul +/12’U2 + -+ /ln’Un, /li € {0, ].} .

TRZ ARG IZ LN, ATENZ A SEZNEN. 5—J5m, RATATLL
X n FEINZN BB A S ZZ AR, 4 0 < 3 I, 8590 RO BB n -1
S, BAEAE {4} € [0,1]" 15 XL, Ao AEZ R, A, BATHTUR 1 <m < n 15
St A FEZTHART, T T, Loy AEZTRT. BEER v, WRFFRH, W2 A
ARV T AN EE D S, MRS R AL RS RN EE D SRR T R v,
RS SRR ) 0 SCAL T — S I 2 A, A8 A — A P AT DU R B s i o™ 22 T A, A7

n—1FAFRTTREIE (K 1.7).
— <

L7 LR = AWK

B, B R G EIE Y0 Aoy HEAS MEEXAHT I 2 R, FIRNEBTIE. I
TEFRATTUEBA 13X AN AN 2 TR EE A, T 9 A 3050 () R B O () A S T XX A L AR AT
%, AR TARFNT7 [, T2 BATTAT LAEIX AN 22 TH At p ) o C B P —

2R RIBATM A FEC B A BE R A 2 AR R RT . FRATTIE RN 2 BT — R — A
T — AL B B ECE. R SR TR B AR RS — N7 ) B ME— ezt i 3R
AT S 5 A BT ) T, TS 4 ) T B P R ) B ST T R — 0 i A [l 2
I — 7€ A2 2 AR A7 ) ) zs sl (AR BT ezt s ME— 1Y, P i B AR & ) SR A E
HIAEART [ &, LI 5 — 00 ) [ 2 RHR B o IR T 1] PR iz o, X PR 2 X B R T, 2210
A HpF B RO ) B AN FRATTH — N i RS TR R R — o N T R B JRAT
P2 R AT R, B — A 0] S T T AR A8 BRI B — AN R[], X 60K 8] s = [ 3
BTG BRI 73 F1 RS TR AR B DI, [RIINF, AN I 5 (8~ T PRV 2 R v 35 BRI — %
XPAR R SR ) B AL A SR AR ERTH A 2 /b0 XA 0 X k.l 3ok 7 SR PR U 4, FRATT S X A
BOH Oy 2D 1 A DX st R i L A — AN 4, BT X S 2 TR ) — S X A
FREATL — KB T ZHAARKTTSEE n(n—1) +2. B4, 800000 vl &, 2R A —
X I TR 5 — i i s P TH, HAS B B S B A 1 AT ARATTAS B 22 T A )
M 2(5) = n(n—1). N ERSHEATWEATUE K, — b T — AL E R A2 E — € fE
25— B PAT DY % Bl R i) ™ 22 T .

I B 18T ENKRREN =T akhiEnk. TR, IAMERFELLH T ke L
o B % EmAR
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K 1.8 R E g ) ROKE

ZREFHIF n DAL BRI FE R RS, R BT AP ONRE 20 A7
F 25— M f 2 8] A T S ) L e AR AT DA R — AN AL R B 2 T A, (AR T
A= AT Y. XANELE T e A A 75 3L ) 2R, xSk s 1 —
APHEIAERE, WITE 2 A ERI—XF O BRI 2 TH AR, FRATRRIXFE 1) 2 1H 4 9 ER
WHEME. B 7 AP RIS L 2 A A, B\ HR, KRB R DR R T
BeE AR 2 ik (B 1.9).

B 1.9: B RoRPENT i b () =Ry Z A, WA BIERIN: B\ i, KR 8eE Ly
(LPNEYIE S Sy I TEEN

XfFFHESP R R A ERE V = (v, .., vy,), EHUZP T A & w AUE 2 A, . A €
R i3 V = (v + Lyu, v2 + Aou, ..., U, + Ayu, w) ST AT A E R R E. A,
V BESK AN BT AT DU A TR BB AR 0 2 T4, T LS o MBIt v Ik 2n 307
FATZ A w X RI AT, 3R AR 2 SO el 4t T 2n JTR I — MR (K
1.10).

K 1.10: PBEGUa H R R

XA A ELO AR, LR P SPAT DU AT BAAT Vo rp A — — X, TR AT
MBS 20 TR RITHA.
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A2, T2 18] o 4 1) G B AT A2 5 R AT DU AR ERAENR? 52 15— I 2 AR 7T LASR
INAFRAEIIR IR IR? B SRR EMN. 8N RN — DRI, BRI RS RS

w
TR % B K B ST R b

RNTERGER, FHRAVCH E —Lid 5
o {+,—,0} = {+1,-1,0}, AT EIATS,;

0’ %x - 0 — VR
sign (x) =9 x - {+,-,0}, TR x IS,
x|’

e [n] ={1,2,..., n};
o {+,-,0}F = {X: E > {+,-,0}}, K ERNES E LNFSEE.
PR HE X, Y € {+,-,0}F,
e X, :=X(e), T ecE. ¥ E=[n] b, RATWSI X XRMAE (X1, Xo, ..., X0);
e Xt ={e€E:X,=+},X ={ecE:X,=-},X° = {ecE:X, =0}, RAMLE X
TR TR (X, X7);
o =X = (X", X");
« X =X"UX =E\X° N X HXE;
e 0:=(0,0), BIEmHE:
e X<V, EA X CYt H X~ Y, XFE {+, -, 0}F L& T M,
e S(X,Y)={e€E:X, ==Y, #0}, KN X 1 Y KD EE;
X;, X, #0

L FRN X A
Y, #X;=0

e XoV = (X*U¥"\X),X U \X"), 8#H (XoY), =
Y MEE.
T AE a,beRY, LK (M) &4 K, L CRY,
e [a,b] :={la+(1-A)b:e[0,1]}, NP &ALk B
e K+L:={u+v:uekK,velL}, AWNESLNIIXT]EKEFED,
e H, = {veRd:a-'v=O},H; = {veRd:a‘v>O},H; = {veRd:a-v<O};
e Fp(A)={veK:a-v2a -u,YueK}) *Ha=z0i, LXK K a A EHRZT
FE;
o F(K)={0,K}U{F,:ac (RY)"}. 21 K NHMNEER, 7 (K) HITCERERN K HE?,
Hrp AN K B0 MFCNER, R ERRABE (facet).
T FRATIZE HY 1) B AN IR A 2 TR 1) v R
EX 3.1 d R FHEIERELA—FIEE V= (v,v,..., v,) ERY, REHAF T VA
ARRME. R EEAANAGZ LK, RNALAEELY. wREE d MO HEBEALX,
HAVARL AT —RAES. @2l & EEEA =0 HFH— K.
EX 3.2. MEARE V A HWINEZME (zonotopal) Z (V) = X H AT ki K fe

Z(V) = an [—vi,v;] € RY,
i=1

B A X TR EFOFAREY F] G E
2pbsbe XS T (3, § 2.4], BIA EM™E IR,
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AL, 73 ) BT 2 MR R PR 22 T, TP I o R AT 22 A A Lo 0 BR R
2n K. BRI 2 MR R H S 1 B AR A O S L ) S B B EAR S, e 3RAT
GIN—ATH, Bt m R E E RGN GO — IR ) &

EX 3.3. V 9EEMIE (oriented matroid) v —%REIE (covector) 4

LV):={o(c):ceR?} C {+ 01",
P o R {+,_,0}[n] 2 LA

o (c) = (sign(c-v1),sign(c-vs),..., sign (c - vy,))

=({ee[n]:'veeHZ},{ee[n]:veeH;}).

BATITLIAN 0 # X = o (a) € L(V) XA d 4E75 18 oI —2eid J5 SO e m) 8 1
Hq, X* H X~ 75l e HE A4 Hy s m s, 1 X0 o3& 8116 2 1 m)
BOHEBIRATATBURIL, % Y = o (b), MorE5%E S (X,Y) &% (H nH,) U (H, N H) W
A & ST — M € TRl AR, FRATTRT BARH DY 2% 5% T 4% ) B 1 0 BERSE X
ENX 3.4. EMNHF—HFFTEE L C{+-,00F A—AEEREYLAREE, ¥ ALRLH
R T HT R FAF:
(L0) 0 € L,
(L1) Xe L=>-Xe L,
(L2) X,Ye L=>XoY e L,
(L3) % X, Y e L H eec S(X,Y), WAL Zc L 1% Z =0, BxHEE f ¢ S(X,Y), A
Zy=(XoY); =Y oX),.
£ 8y E ARz @ik e B,

Hof— AN ) B A B R MR S, (L0) A (L1) BRI, T (L2), % X =
o (a),Y = o (b), BATTLUE a [7] b #Fe—A/NAFE, W H, FN R Hy, JedE— AN,
PSR FIHIGES H X oY, IR e € S(X,Y), ATk a M b R ¢, FHE v, 15, T
—&H HS 2 H,NH;,H, 2 H; NHy, B Z = o (c) {EREWZ (L3). T2, mEAENT M
PARERF A — M E R AR 2 . — DN EF R M 2 WA N S8R, JAMERRHO R IR
B& (cocircuit). @RI £ FIEERIFEEMEESILA C* =C (L).

FERRIANG AR m B T3 2 AR U . e mEEE V C R, B 21
1 7 =7 (V) BLREREE £ = £ V). TEMRAE X e £, T]lilE X

Zx = Z [—'Ui,+’Ui] + Z v; — Z v;.
ieX© ieX+ ieX~
Ma zy cZ. W a e R 1§ X =0 (a), EEE] FD, (K+ L) = F, (K) + F, (L) 3HEE "™
£ K, L §or, 416G

Zx = Z [—v;, +v;] + Z v; — Z v;

i€H, ieH} i€eHg
= > Fa([-vi+0i]) + ) Fo([-vi+0:]) + " Fa ([-v;,+2,])
i€Hg ieHf, i€eHg

=F, (Zn: [—vi, +Ui])
i=1

=F,(2).
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TR, Zx B2 Z B—H (M a=0W, Zy = 2). Rtk Zz FER—ANEZSH—EHu
Fo, NN Zo@) . T2, X > Zx g5 T2 RIEN Z 8 675 1 218 1)
RS FEEE] Zy PR FRH TR T X0 MR Mgy I — AN 3R 2 ik, RI4Eoh
A EENRRYUE. R, Zy 22— MBI HACY X 22— DRI, Zy 22— 1 H4H
Y X BRI AR .

RAVEEHZIE VAT OB, IEI, X0 40 AR MR |X0), Wi X
SERE—AN | XO| 4RI Z AR, R IHERAA B R AR T A =
I 3.1 HF 0<k<d, Z 8k k@i 5

() _2( )dzkll(”_ _1), (3.1)

=0

45 7 36

IERR. FRATX d > 2 AYNIERA.

M d=20,Z N 2m B, W £ =20=200) (") + ("7Y), £ =20 =2(0)("?),
(3.1) koL

Xd> 20, BEMMEE d <dn>d,0<k<d H (3.1) ®L. WT 1<k<d, —N
k AEIXT R RITE X € LR |X0| = k. 45€ k otk I € [n], & U =span({v; :i € I}),
LRI A SR R S E]. B4, X0 =1, MBNY X =0 (a), HF a Wi U CH,, MA
TR jel, BATE v, +U ¢ HyJU C RYJU, Wk d — k 42518 RY/U T 1#8E T i
Ho/U % T HRRE (v;+U),, B—AKRAE. HTRERE (v;+U), BRLT
— AL E M, IR R B £ = 2d7§: (A Y. BT kTR
(') A, TR "

) )

0
HIDN (3.1). #E R RIA TR A BR AL 2 0

d-1

(~DF 0 = (1= (1)) (3.3)

k=0

SR £ B

U (i

L) 2 (0o o) (7
St S e )0

d-1 )d—k—1<

Il
—~

|
—_
N

~
J——
S

k=0

SHSt b, RIS £ WI— AT, RRRXUFELS I T L M Z T (face lattice) B FEM, W (1, § 2.2].
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PO [y
> ((—1) - (1) (kfm)('”’")
=) (1) 3 o ()

m=0

(-1
=> (0= 1) -0

5 (3.3) B0, TREAVER 00 =25 (1), 0

m=0

. R T ARREA X, BTGB g A, £ 8RB KB ST M n
AGEF—Ffz B 6911 R EAGT @ AT R 949 KA, ST A o 135133 (3.2), 3FT
SE [9, § 5E].

E [V ME e R BB 5 5 B B H AR

TE=YEMIETE S, BAT R T A T35 2 AR 3R —Fo s — AR Kb,

Pl PN S SCHE 5 — RO — SR I T I ) 4R RS, BTEFRAT DI 1 A b e A
Jh 5 E AU L 7 el i
EX 4.1. HFRE@ME L C{+ 0" HAETE n LR L\n #2U0HE L/n 552 L
A

L\n={X e {+ 0" Ao e {+-,0} % (X,0) e L}
VAR

Lin={Xe{+-,0}"": (x,00e L}.

FTLARE R, M BR A K 6F BE FOBR 2 B, T4 AR WX BB . I £ =
{((X,0): X € L/n}, BAIKICE n A—ABIF (loop). TEZATHITHEH, AT —AF 1+
) ) B C B AR g T AN ) e B 1 BT B SN R S [0 R ) B T R AR
BX 4.2 % L (- 0" R=ARAME, g ¢ [n]. —AREME L C (+,-, 0} 3%
A L WH—NBTERF, W R Llg=L, L g RE L PHAR. KL

10) (2) = {X e{+ - 0" (X, 4) € 2}

E=YEE T o, JAlT$e K 7l #52mT LLas P10 2n ITE I — R k. BLERATT ™M
5E ST 22 A4 R B K.
EX 4.3. KLV =(v,...,v,) €RI" R—AFHEHEE. WwR—%FFT@E O C {+-,0}"
W
(i) Uxeo Zx =Z(V),
(ii) % XeO, BiFFmEY 27T Zy 89—A@ Zy, M Y €O,
(iii) % X, Y €O, W ZyNZy R R Zx 5 7, 9@,
N O #A Z (V) 69— SRR ERR.
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ATLABRAIE, #5E — SRR BT 45 AR IR IO B 2 — DN IR 2 iR ik, B2 58—
A X AR 4 e ? FSSE WX R AR . (HAn FIRATR € m] B0 B Wi, 1t ok
] LA 2 BT B3 2 M AR, B, FRATAE W R Bohne-Dress & 2.

EIE 4.1 (A. Dress, WL [6]). X VeRI" R—A@mEBE, Z:=Z (V) ALLHGFRFSIE
W, L:=L(V) REAN R & @M. AR A, BS

{Z C{+,—0}"E . 2 =L é@%'éyt%a&%ﬁ} — {0 c{+-0}" 0 RZ W3R % Rk}
L0 (Z)

2 RAF R LA G

ST ) B DU S (RRE I AN M, LR 1T DA % (6] ANt FR A1 4
SR B — N A I BRA K. B2 b W AR d BEARIEE V = (v) C R R
VBT LA St — AN T — AL B A B E V = (v + Liu, va + o, . . ., v, + Ayu,u), ff
"Z=2L (v) B L(V) MHTTERTE, Wifi 0 (z), BT A Z (V) B 2 k.
R, T VT IRAE, T AR (X, ) AR —E R X0 = 4, TRk
(R [n] 0 d TCT4E, VA B R 0T T — At w, NTTRESS IR (X, +)
AT, WA T O (Z) hibiNE X, KM X 40 Zy R (TRERIE) ) d
YETATE MR (CTAT VU B ), SURARAT DL b X 6 i B AT 970 28 1) 40 {7
UL 24 ik, 1T O (Z) itk T Z BRI, TSR R B 5 B L
EM Zy, EAI—EWL X0 = d. TREMYIHNT 10 F i

R 4.2 (P. McMullen, W [7]).

vol(Z(V)) =24 3 |det (v, v 0w

1<ii<iz<---<ig<n

RAEFERE I T IRALE § 2 AR A il AL

4 47 T FiE

FATAPIR R EE 22 2 AR A, A4 130 2 B AR NUE UL RO, JFxs T 3R 2
RIS T BB A1 BR T BT AR I 2 A O i RO 2 A, AR R 50
HARERIA 2 AR RES R IR BE A3 IH). S b — /N 2 MR RE il P A2 45 th A5 TRT
Bt 2 HLAX = H N 5E T 0K 2 TET RS, BIRT BA el — A4 KRR RE R 21 ) s . AN
WS 5 S IRIERIR B [5], HAURERRIR T A2 8, Prop. 3.3.4].

PR gt B HR AR BASF R AR . (ER AT iR s A PR . Hak by
1§ 1 IRA TR — AT =Tk 73 A A AR SE TR AR, 10 B ATT AT DA e T A 2 T A A5 28—
A “3D WA Wi, © B MR = AR — B e e i, (BN BT
SRR (B 1.11). X2 —FlofEEARIEER (quasiperiodic tiling), & FIHE 54 [ 45 14 K EAH
K, W [4].
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P11 AR ST A A5 2 DU Rl 3 7o 5 4 H 10 v P U0k

SE FARE R FEAE T S L, Shdhar, AR LSS B RN, ZH KA

B TE MRS, BRSCHAB 7T 2% (1] T3],
S 3 HR

(1

2]
(3]

(4]

A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented Matroids. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 1999.

H. Coxeter. Regular Polytopes. Dover books on advanced mathematics. Dover Publications, 1973.
B. Griinbaum, V. Klee, M. A. Perles, and G. C. Shephard. Convex polytopes, volume 16. Springer,
1967.

A. Katz. Theory of matching rules for the 3-dimensional penrose tilings. Communications in math-
ematical physics, 118(2):263-288, 1988.

P. McMullen. Space tiling zonotopes. Mathematika, 22(2):202-211, 1975.

J. Richter-Gebert and G. M. Ziegler. Zonotopal tilings and the bohne-dress theorem. Contemporary
Mathematics, 178:211-211, 1994.

G. C. Shephard. Combinatorial properties of associated zonotopes. Canadian Journal of Mathemat-
ics, 26(2):302-321, 1974.

N. White. Unimodular Matroids, page 40-52. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1987.

T. Zaslavsky. Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes:

Face-count formulas for partitions of space by hyperplanes, volume 154. American Mathematical Soc.,
1975.
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What is a Motive?

Barry Mazur

BAIMAREIH I B R, BREARYEEERATE X, PR RN e — L
[FH AT DR EN 2/ X ARG d4ME B? 80E U, R R AE HY(X,Z), iTUAEZ KFERE
WRH X7

FHEHFXANERILT R —FFE LEE (tautology)!. 4 GX AN HH Abel #f HY(X,Z) 1
Pontjagin X {f§ Hom(H' (X, Z),R/Z), X&—MK&EIE Abel ZH#2. Ml H(GX,Z) HIE[F
BT HY(X,Z) = Hom(GX,R/Z), 3 HA — A IyE i E16

X — GX

e T HY ERESE. TR SR AT LS — P O GX SRAIAE
B, R TE IR X — GX R ERIMER. WREE—RKIE, B H(X,Z) #i
H™"(X, R)(R 7& Z%H), Eilenberg-MacLane = [HFIEIS NI H T — N RRKMER.

UAEFRATTEL 0], 0 SRAE S5 8 50 0 T & IARE LT 57 B 2% R A 1) R/, 2 15 e S 3145
—A5 AR B

EARE R, L IA1E R T #% Eilenberg-Steenrod AFEFE4ZIE 1. X HARE) U S
TEOLNEE NS 2%, XTIk BRI X, AT R EA —MRGH Z &% E RS —
FRAEA BN k — C, FEIX PRGN JATAT U AL <& 7, A Rl= 2
() _EREER. AW RIS & nTRLERON C, IXFEAS H 9 B[R S M TN IR E. /T 5
WEER) EFEW, ATESL 72O Taf 7 e, i — B e 575 ERR R A 245
kv FRECA, 80X AREUEA —Le R, 3B — Lk b 5 o1 45 H4 AR B IR B ASE BT HY
B Bt Hodge R, A% de Rham E[FH. @ifE (cristalline) E[RIE. P& (étale) b
FE . -3k BRIV O TR RS ), %4

XL AR, R EA—FE ARG — W INEREFRE XL A FTE1ER?

WERRET 1 W BRI, AR EE RS A AE. T e ERpuig iz C,
‘B Jacobi & J(C) & —MEEET C M54 (genus) [ Abel #%. J(C) 1E kb SRR
e XA C BB 0 IR A B R ETE RMET, HFHIRATEBAMER T C - J(O),
BAMOCIE S M TamER R kb Abel BRGNS, JF HORKE 7 AEH) 1 B ERIAGE. X
B N Z BT X — GX BIMIE, RIMIX B J(C) AEMKT GX B REEMLEM. 1F
NHETT, Albanese HIIRSFEMIEXFEAD b ERAEE v 4t & B Abel 1 A(V). HIRM,
PATEE T A B T b [F R SRR AR A, B3 14K Eilenburg-MacLane 7% ] R 3L
FKIAEA Abel IR EAERBA. AKX IFIES F.

A. Grothendieck &Lk 7 —FM o Ek—gi Lidvs 2 LR, pr3 Rre R
BT R « B ER T, BAK B I8 JLARTR SR i s i A B AR b R B —— R an
%, EwFEE BRI CPLEE” BE R 3L (motive) B “BEAA”. AIXAETE A IX A&

{E#E (5 B Barry Mazur(1937-), £ EECARK, IR TR, OFASHECEOR R AR UM, fifiid 712 S TAE, 4
HIE S Modular curves and the Eisenstein ideal H, 45 H 7 5 #EE LAWK R dh 28 BTG o] BE 2 1B

FafhE B AR I, 2019 HECER 50, M5 agitatobkc@mail.ustc.edu.cn.

LIXORMER B, XML SEIR A A B AR, GX seaE M HY HRMER, IEES H HY ER.

XA RIS HOR U 6], HY (X, Z) 2 MEIRAER Z-8, P IR F %, T/ GX 908 rank(H' (X, Z)) 4
St TR ]

SfkiR AL g, BA 2w ek e R EREA Q Mk B AR ) R ] B —

35
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“HAAEIR I I BLAS R, BT L — KA R ) E AR E S, X4 AR EA P
PR OR b B IX LA [F] B BER T 5 ROZE A R 2R 78, B el a7 AR 25 5L
N T ARIE AN R BRSSO 1 B e B ARk, FREESL T RTIE R SR A MRS, e AR e
X ZFr UM X AN, 2 AR R I R BRI AR B FERA & S LR (Bl
SLEE ). SEbr b eHiER VI sen EREAAEE (1))

£ [1] 1, Grothendieck JEZLIX — AL IR 7 — A5 & KA. XK H, ik
R EAH BRI (motivie cohomology) 18 40— & ¥ 5K HH BIBHAL, AN B A2 1) F A8 2 12 )
& BB AL B ) R, 43 AE & B R RN 25 Bk e & .

AR & —Fh A BB LA ) _ERIEES 5. XF A (universal) |k [F]
BB ROZHEE SO — NIRRT Vs H(V), BNk E6H S AB0% e ws ez — A4~ 2
W41 73R (graded) Abel Julg H. 40, FA10] Ge Ay A (correspondence)V — W
A RN B RRRRST. T HIRATE R TORE H RES I A — L8 B [F R B R, 1
41 Kiinneth A zUF1 Poincaré X8,

Grothendieck X @& IX T3 A L EEE R 20RO B 72409, i TIE®S
T e REURIaWs, X 3T T R A A, I seyE i iE T — e ——3R A1
W& Abel Julf——BA — PR ZR) BRI, X KRB M= P B, UL Q-
X L RIS AR S 505 2 TR R A 5, iR &34 90 Sk s R — DT AR HE b A8 22 1
NPT R B R RS BRI Fk, IIMBTIE I “H9F (projector) fiiz B
FEE Abel Y0, BIANSE I ARAAEER AR, AN AR EE, {62 n] DL 7249 W Kiinneth
ARPIRZR. BJa, & H ONHTHAAE R TErE R R IEE. T2, RIEXMiE, L i -
=) LR R # 2 2d H.OIXEE, FRATAZ 2] 7R <5

H

Smooth Varieties/k — > H

N

Cohomology Functor H*

<
\ Graded Algebra/k

SRR E AR A D BREE, — A2 R U B AR B AR ey A u s, 2
P AR AEARE LRI 23 11 22 5 80 5 A8 DA L R 95 4t FEMonS LR A7 A, Bl 5 —fikd
Wi, A HARBEE AR E (P10 B 0k B 1) Hodge 5 AE A FRIK ¥ Tate F548), i e 1#E AT
LA R T Jir A Y B R A 4 R 0 A X — R AR ) — DD S —— BRIV R AE — LB Rp IR S
UL —— LTl RE 05 BELAEAT I L5 8, ez s itk

Rk, AT ARAE 220 4 LRI e T

Vi HV)eH,

B A5 S PR O4ESE, O ELYERE 0 75 DL R RO, IR BT S TE 1 4RI S5 2 T
Jacobi A4 HEUHERAIZS. [FORETESEM0AE, EARREF 18 R T2 0 m BT Sk £ fh € SR,
TS S TS A — N ICRERO 5 5L, BSOS CE EUATEmE T (V) TR AT 20 R
HOELA, MAITHARE (OB MR < LRI, 36 BLAE RO 1 P T Rase, MATT AT B S
TG

ST, Viadimir Voevodsky AL 21 ZH2 s T 7T LUy M2 R0 — /AT 24 A 4HG
SR, T FH A L SRR BRANAY Grothendieck JR3M FHUEFFALR. FLURA, R —F “Fefl

AR V x W H—MREEE (algebraic cycle), ‘B AT LR — 2 EBUR B,
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FARE LA, AT REBS IR 23t e SRS, I HL5 B AR BARKE LRTAR IR R 1015 21— Lepl o (1 45
R

Xt JEUAH B VR T8 BT 3 2 SR R AETE 2 80 70 S0 AR iR 3 /1, Bl 7. ARk
JURT BSFRoRE S LR BORSE. MR RIS BORINEEAS 21 D, FE DURH IR R EF UL,

#EIE

A& Notices of the American Mathematical Society 22 EF ‘What is ... X —FHEH
WRLH 2004 5 10 H—F, K Barry Mazur #85. 38 55— RSB TAE, JFH
XF motive BIS WAL T, M A mBURE 2 AL, E &M fe k. SO EEME motive
BB A G — Wb SO R, X EARYE BRSO AR A B I UGN <R, RZHAA
VI oAy 3 G YRR T L 1 P 9 5.

S Mk

[1] A. Grothendieck, Récoltes et semailles: Réflexions et témoignages sur un passé de mathémati-
cien. Université des Sciences et Techniques du Languedoc, Montpellier, et Centre National de la
Recherche Scientifique, 1986.

[2] S. Kleiman, Algebraic cycles and the Weil conjectures, Diz exposés sur la cohomologie des sché-
mas(J. Giraud et all., eds.)North Holland Publishing Co.; Masson&Cie, 1968, pp, 475-507.

[3] J. Manin, Correspondences, motifs and monoidal transformations (Russian) Mat. Sb.
(N.S.)77(119)(1968), 475-507.
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i BEAAEE (Z)
R BTN SRR

S

RN EABERTAR, R EATRE LSS S I VIT7 R A (B W 3507 [RB0R
(]I, FRATTHEIX AN A FATARERR T (vortex sheet). %% b, “4ETCHEA 1T R 4 A A4 1)
I Fr fg T AH Birkhoff-Rott J7 e, M 2 0uMT v 7 (K 3248, AN ar AR EE
EARA R BB RIE T, X IE AR M AN AT 4, ot P AN T 5k 3 4/ 2 /T LA
MG, i A R (0 R N R AL AR AR AR AR E, BERDIRR 752 H ) Kelvin-Helmholtz
AR (KHI). (HRm K o — LM B (FIanmiiis. sk pss) e
J B S A5 PRI AT CABH I KHI (R A, XAl E48 BRAR R A, R A (1A e M il vk
TATGGE (8] W7 5 75 T 2 B RN R AR A SRR I i e e () A e R8s
ZIm, ST E LR, IR — LU R R 1 [

B8 B S HF 2

BN LABEA T B AR TohitE. AT SENEED, BEA1RiEsh
H AN T PR 26 RRHE g FE AR A

[(ét +u* - V)ut = -Vp* in Q*(1), (1.1)

divu*t=0 in Q*(¢).
Horbrw®, p* HITARRIERE . ). B T(r) NPT Q* (1) IS IR, 57252 St

ERAR IR A AE V)5 TR B TR W, WARIZAC SN (vortex sheet). BLI, #HAHEE
15K 77, WA FH i B F1° P EANBIEN A LS, B

uton=u-n=T()RBEERE. (B30 R %) (1.2)
[pli=p" —p =0. (S PHEME) (1.3)

Hrhn A T() KT QY () —MIRRASNER S, XFEEEEE B A Eshfio A~ EA
BIE AR B A S ) A L AR SCIR BT R R IR E M, 218(1.1)-(1.3) XN
FEHEFEMVHAERIERN (EH8) EE .
LR ORGP /N B 0] DUZBE AN T (BN A S 2% [RTERG AR, 46 T — & 1E PIaa e

By, ACHIH AT RE S Y ILIGEIA) 1) o 8, X AR VAR ) RN R - B E AR E M
(Kelvin-Helmholtz instability, & KHI). XM RAEEETEORSEFR R, #lis
PITER AREMPRABE, LEMZWESE. 805 b, XEI N7 F22H (1.1)-(1.3) B2 {f ) #3
ERRm S R ARG /EdE et F5L b BAE 80 MUK, fEREREZ A+ (Sobolev 7%
[B]) B E M (ill-posedness) UERHELHT [5] Z5 . BhAh, 78 C* BRI, XA AE 1] 8
WRBER. HIRKE, AT LR ECA & YME, SHZgMERET/NRRSN, AL AT

EE(EE: BIRE, 2013 FECFERI 2P, MiFH: yx3xCmail.ustc.edu.cn.

MfHEE: 3 7 13 kA, 4 3 5 B, 4 A 5 N2, Ffbmis: £1ik.
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AERTHIME BIE SR, BME At SRATUSIRTT DL I 0 — 20 T80k bR B TR 2K, B %5
JEFE R B A RS E AR, R BCIEAE B (Rl o g P, e I SR AT
RANBIWETE. A SOHs 1 ZA R DU R L
L “HETEHEN: SR AR sl e At B A IS sh B g, TJa AT LU s
248 Birkhoff-Rott J5 R, g A2 0] LURT TR AN 73 Bt o (0 77 5 AR 00 BS REATF T
2. RIIK 7 R 5K X SFARAZ T ARG E 1 F AT AR IR i ARz e 1, B R 22 5
T FR . BT, AR AL AR (1.3) ek

[p] =oH, (1.4)

Hb s o > 0 A EREH AR, H R D) PR, R HHK
I, JA17E Sobolev Z¥1i] (AETk7 1) HUHESE T 2 /b T LAE I o 30ds 22 1.

3. JUEME AR E P (I BE VP A SR 1 BT DA B MHD 7
(o1 P K 2, 575 B o B 7 A T B RS, I 76 1 o R R
RESTU)2, BPETE3A F K R T TR e LU B SR i s e, k4, 2
B AR DU T A S S O 10 BT ORI 4 1 i e

4 AR EG, T R FLR B VAR DL IR, BRI, R4
o RS MR T 5 LR B = M A 2 56, S SR A . Y R4
TRORIRAR R <A I, B RIS, I e RS, R
(RETE — AT L A0 R 8 M . T IE SU S BRI | 763 25 5 B R
% B E S T R RS 25 . TR T R PO % 1 R e R, OO B ek
LA B T LR MR . BCAR MR e e, LU . AN, k=
& TBIKORE ELBAR, A% 5 R T RS KCHI (126 2, 5086 ) OO B 5 %8 A 2 HEAT
.

— R HER: Birkhoff-Rott F5I2RENTEEE M 5 SCRAr

FE— R OL: O, I, B A RS e TE TiRiEREs). X
TERATIMRIE V xu =0 o] LSRR IRA P RAR PR S n &5 I u = Ve EL,
PR HARN V-u =0 BI5 Ap = 0, 11 53458 DX 355 P 1 A0 2R 250 AT 58 56 45 B e BRI JE .
L. ZHEBFAT, KNEREFHAE R FE =22 AERNEE u= (41, u,0), T Vxu=
(0,0, 0oty — O1us). BAVE L EAREHN w =V u=00u; — Ous.

2.1 Birkhoff-Rott 5%

T BURTEE, ATHER z = x +iy KER R PR (x,y). 2:=x—iy Nz BEL
HU, fo = 0cf N f KIS E. H® N Sobolev 1], PULEIRATIR TR F AL 5 FE. BATH;
AR FEARAE L T2 (B A m)C(r) E—A Radon M, ML EREL & = £(s,1) 4
t, Hir s RIKSEL, £(0,1) AFEMNBHRIRE. XM H Majda [19] $2H. &4k,
WERE 2 PEACAE y (s, 1), BIXHEREA] £, ST ¢ € C2(R?), f

ﬂ@mmemw@:/aammmnm

MR T B B-TE SRR ER (Biot-Savart law), 435105 LAIIESEE £(s, 1), FATAT LRSI 14
WHEBIVIEEE ) w 3SR R, B RILPESE T T

y(s,0) .,
z—f(s’,t)ds .

Vze (1), u(z,t)= i/

2mi
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A ULE ST (R P )T () A AR s T 388 I 6 5 320 O T L P8 6 00 3
BRI (RRTERE) K X

y(s',1) ,
—  ds’.
E(s, 1) —€(s 1)
SR, BRATTRT AR R R (LR S L e 5 Rk TR (S M B, T LB
W [27))

1
u(é(s,1),t) = 2—m,P.V.

[ms,z) Fa(s.0E,(5.1) = u(E(s.1),1) o

ve(s,t) +ds(a(s, t)y(s,1)) =0

ﬁ\:ﬁ'ﬂ a(s’t) y‘j—‘ﬁ\i'fﬁglﬁa jﬁ/@ a(O, l) =0. iﬁ—‘ﬁ’fﬁﬁ O'(S, l) = ‘/(')s Y(S',t)ds’, a‘_JF,f/EﬁE%
Bt z(a,1) = &(s(a,1),1). XH s(a, 1) & a(s, 1) FIREE: a(s(a,1) = a. B4(2.1)0] LItk
{EW R ) Birkhoff-Rott 512

_ 1 1
Z;(a’, t) = Q_MPV/ mdﬂ (22)

EANTTFEA S T UL “B &7 (circulation)a 1EAZEL, 45 Bk AL TTRE. v := 1/|z.| FRIER
£ (vortex strength). Bl z = o XAESMHR —AFHIRF.

Birkhoff-Rott MM It &4 T L4, REZHI &3], £ Sobolev #¥[A] H®
B LR R A A (8] C HR ) FRATTAT DARA AN 3% SR AFL 1D e SR e T s S 0 e 1, (EL AT 4TS
AJ DAAE S Ag AT bR 5 2 1] HR e B e 3000 e 1, B 2 28 TP A A B S AN A AT AL ) R A i
FEENE, 22, (32, 4, 20]. {HI2 0 FELEAERT WA, T b 00 il 2876 BRINF [A) 9 2> veE 4k 7 e 12k, 491
1 Caflisch-Orellana [5] ¥4 1 Z&PEA T FELE 300 BOE R 2(a, 1) = S(a, 1) +r(a, 1) +a
(Hrh r < S A ZEE D)

o\ +u ;o\ 1+
S(a, 1) = &(1 —i)((l - e-a-m) - (1 - e—aﬂa) ) O<e<1, u>0.

PR b, BATATLAEASHERM n > u, 0'"S(a,0) £ @ =0 LTI K.
2.2 - SmAMIEEN . KM

IRSE R, AT 2 T 5K — AN AT RE K pR £ (8], f#43 Birkhoff-Rott J7 FE7E R
B [a) B SEE K. B A, XFEE I TE) ¢, BRIEL z(a, 1) € LY (R), T Birkhoff-Rott 77 A
S B — NIRRT AT IE R, A e] LA R 8 i AESE IR R & R A 1 L2 A5
7 R AT

HARGIA—AE X WA ELIK S s € X Jordan HIZE T : & = £(s), FATFR
‘B NT%-5HHZ% ! (chord-arc length), R2TRIFAEREL M > 1 {115

[s1 — 52| < M[E(s1) —E(s2)|, Vsi,50.

o MR LR R B SRR (- B, KRR M2, FATATRUER & (s) JLT-AbAbAz
15, I HAFERE b € BMO(R)?, {4 £/(s) = . i, BN, LUK IMIT 0455 (1% #h
WAL (WARKR TR p = +e) BLRIXFEMIMZ. David [18] iEWI T, %X, RATATLL
AR R LTI L2 7 Tk, YRR, 35 VBRI SN i A 5 A 4 S A0 10 B4 45 40 4 T
ANIF, Ja#& X Lipschitz #2810 Y.

VIR R, (FE B AR B OO, (Heamie) BMAAE

*BMO F[8[E N BMO(RY) = {u eL},

sup 61 Jo 1u(y) —uoldy < o, ug = i [, u(y)dy}
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5138 2.1 (David [18]). *HE—UAK S S s T L EN B & T & = £(s) (4RI, 25t
KR EN LK), TR HT Cr:
f(s)

Crf =P.V. m

dé(s")
R L?(ds) — L?(ds) #9H R &M HT.

ATl EERE— T AT AR BEXA G B SePs b, BATIRRAR (2.2) A FH 52 - VE K E
R, AL T e LR SR N R L, AR AR AR AT RESE A, IR DR N T RE A T
FIAL R DA R B IR. AFREBAER [40, 41) ESRIERR], A AE X (2.2) B A ANF Y
fr BARZE, Rl
( 1 1 dp

2a,0)—z(B,1)  z(a's1) = L(B,1)

_ — ’ _L
Z,(a, [) - Zt(a’ ,[) _27.”'P.V' ‘/|';;|5N *
1 2@, 1) —z(a, 1) -

* 27riP'V' /|ﬁ|>N (z(a,1) = z(B, 1)) (z(’, 1) = L(B, 1))
He N> |a|+|o/|+1. FEZRE R, 2 (2.2) IR & 2 (2.3), M2 (2.3) I z(a,t) &
REfST15 (2.2) LR WS, WIAELE c(r) 115 z(a, 1) + (1) 2&(2.2)IfF. XK, 456
EIRBIEE, AT PALR R AE A (2.2) 45 AR 4 B R, O R (2.3) ORISR 0L Ad
WK (@, 1), (@, 1), (2.3) 0L, BT L2([0,T]; LE (da) X L2 (da’)).

EIE 2.2 ([41, Theorem 1.2], Jm i fEMISEMENTYE). &
2 e H([0.70; L, (®) () L2([0.T; H,, (R)

H oz Z(2.2) &1 [0,T] Mk Lha T L4097

(1) Va,BeR,0<1<T, & |z(a,t) —z(B,1)| = |a - Bl.

(2) 3 X8 (a,b), HEGEE ¢+ ZX 6o > 0 43 supge,or | Inza(, Dl BMoan).s <
CM,m). ¥ m,M R E—ATF K4y LTFRw#.

(3) Inz, € L2([0,T]; L (R)). (ERIAE y =1/|z,| £ 0,00 HILZ I EAZH F4Y)

M zq € C((a,b) X (0.7)), (B) FHAE R 10 € [0,T], za(10) £ (a,b) £ 85 HATHH.

28 BB, FEREAN B E I [R] 55 1, JTRRIIAE 2 (o r) #R — 202N 4. T ok e
P — AR WA S T2 WA TE (a,b) X—BAS T RIEIG K. RN, ZAr4E2] [5] 4
R RGINERET 1 Fd e AR (JCHES —MERE) A 2301 e b A BRI 1] 3
B A R %A eV R AR 2 S IBRIR), i R 38, B R MRS T2 5%- 9l 28

IR R, AR ARAEAE, ELI S S LRI B AR RIS <N S, e 2
SEREMTEY. R T IRATEE— P 2 i R AR EYE R @ 25 € ¥)ME, Birkhoff-Rott /7S
—EAWEER 2.2 FAFB? B AR A TR N Birkhoff-Rott J7 R IHIME? SE
Br b, FATT A FF EAR AR B BB 7 FRISRE LR e AR AW L wo 008 1. FLIR R Ak
IV E vo HIERE wo A HHGER (RTE B3 EE BRCKSHAT, FEMRRNTE 2l
BB ER e AR ), T TR (130 vl i R TR e AR S R ST 2RI Radon M, &
HHm T HIIEALE £(-,0) FIFIERIRE: (-, 0) FLFHRE, X A & (5 SR & 7 5 ik
WS o« JEIFEIN z(e,0) H.
EIE 2.3 ([41, Theorem 1.4], ¥ RHIAFAEN). AL FRALH wy € HP(R), AL
T(||lwollgrs) > 0 4457 42(2.2) & [0,T] AHE z(a,t), HikZ

2 e HY(10,71: 13, (®) [ L2(10.7); H, o (R)

H oz £ (2.2) &8 1E [0,T] Nk T FAH40

dﬂ,
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(1) Inz, € C([0,T]; H*(R)) N CH([0,T]; H**(R)), (EANEMHEIF LBE T 22200 % =
£ARL.)

(2) Im ((1+i)Inz,(,0)) = wo(a),

(8) Ya,BeR,0<t <T, # |z(a,1) —2(B,1)| = |a — B

—REAEOUR, B 7 R RN LA an b IR i BRI AE v A PR AR A 3 AR
2270 = AN, SEFR b, 2. 30 A I — A BB TR R R, W RAEA
W2 A s BRI AN 2, AT BE S B0 RE AR I SEARATT I 2 2R T O R I R AN R 5%
i 28
TP 2.4 ([41, Theorem 1.5, & A fRIIHIME). % z e Hl([o, T1; L2, (R) N L2([0, T];H}UL_(R)))
H oz R(22)&F [0,T] Wik LEE225 M40, HEIX Inz, € L2([0,T]; L2 .(R)), wy =
Im ((1+i)Inz,(@,0)) & (a,b) L&FEMATHEK, WLH z, € C((a,b) x(0,7)), B Re ((1+
) 1nz,(@,0)) L& (a,b) L#9FMHTHE.

R =AY BEED Y A NBCE KPR [41] MR EAE IR, X S0 A ECA R B
HRE T 140 T, BUGIERI AR A EASCE I .

TSR HEME BT ER

JUELERZEOUT, W F il ) KHI IR PR A b2+ o0 AR 1, B0 2% e Lt
e s s, JA TSR] DUHR R IAAENE . Fe o MEdEAT IRIR N A 7T,

3.1 FMmEsKNELE KHI

KT S 2—AFHIE KHI RAEMREER, XANIEH Birkhoff [3] #H. fEAUETHHE L
AR el — 2% N (23] UESE, MfieERE R, W R TR, MnT g nf DA AR KB
AR, B b, AR MK S B 08 (76 Sobolev 25 [A] Y [) Ja #838 52 14 B 7™ KA B 2
JeHH Ambrose [1] 25 7 Z4E RIS 0L, th/E S Masmoudi 25 H 1 = 4EJo e ik B
[2].

Sebr b (23, 1, 2] OUE B ARVEARARAL, ARATTE R R RV IR A IRV el 0 A i
Birkhoff-Rott J7 F2f# Hi >R, H 2 F ) mpl B R an s, X2 BRI 1R D) )38 310 B2 AN 52
M & BTEAR, & BT DTk R AR ILAE - 2R i S50t b HEat, FRATTHE ) s R 2 A — S
AR R T, Hlid & MIE W T, 3R EHMIK S s 5 o Bk (MR, RN
WAL, EIR AR AN SR B ZR). 5 — 5, SR ECAS [ 1) 1 3ol P AR 4
SRR P 2R VAL DT AR, G R AR TR R TR K 0 R K T, SIS (T-W - 1)
T, Hort W2 Birkhoff-Rott 77 F245 i FE Y. (H A SR IRATT 51 Rk B H A4 bR R 1K1,
(T =W - 1) 3br ESARE. & FH TR SR FAERE R AG T, Wi SR aiE s
TR IO R, TE T 7 AN Picard EACEMEH.

HEEAERE, WA REFH Birkhoff-Rott J7 FE KSR AR IR Fr 7] B, 1X 2 (R A Jie P& [ A7 1E
EAS AR R BE 3 oV 5 ) B 35 (R B, BRI RAR I8 2 A R i g sh e 1X AN
i, 3ol X HEAN R 7 R 2EL A 1 pl 2 ST (1. 1) BEATRIF 7T, LR 33 s MEFUAE M B Cheng-
Coutand-Shkoller [11] %5 th, HAEME)T77% S Coutand-Shkoller [17] ¢ T g AN Al [k 4
AP S 0 3 P UE B S, T R B A B VSR JE T Christodoulou-Lindblad [12] 2658
i IXAE B GRS ) EH M CE BRI CAEE N H, WA EER. WS, Shatah-19 5%
4l [30, 31] a5t 7 — N HIE .

KoE POk, RIMIKAIREHE m S 0 IE . 2 TR 3% 7 AR PN S 1 IE U A
H™(Q(1)), AR 5K 0] LAEAS H AT ERIPEZR R R] H+Y(0(r)). X255 EAE
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T2 7715 D R A H 3 58 PR AR AR SR R —— TG 3R 1 7k 7 1 L 32 R T A AR, 3 SR Itk
oy, BART S, RATAGHAEH AR P H B T() E R3S AR TIRE. #iik
AW 1 T(1) — R, MR FRIZIEIHZ S A, (lrq) = (Hon)n 45, K g iy
H R 5 M (BARRIEN g = 0madim®, i,j =1,2, @ =1,2,3.)
XFE, E H V)M REEAlvH, B ST R 3 DTN

2
887]-n)0+--- (3.1)

a5 T S, % 1d ’
O'/\/ggtJnanﬁa 816177'36 8,770 25 ——_'/\/gglj
r 2dt Jr

M A R A THUE I R . ez BE 5 EFEAERFENANE [22] 4 1
S IR I K I — AN EON R G5, I HAZOr AT CUEH] T A iR RS
SRR, R, 2R A B i AT E — DR BUEE T(0) = {(x1, %2, x3) @ x5 =
W(t,x1,x2)}, MR GK AT S TIR 2, DRI B by 5 0 R~ 227 i 25 0] DL 93 8 5t

Z5
wzﬁ( Vf )
L+ |Vy|?

MLV 545 I B VI [0V 2, ) FURABKR I T ST LB % T -
[38].
3.2 WA EMMN

K T RITK J1 2 46, 15— S8 5 4 F A i R B, ARy 2 A P m] BERH 1
KHI f&4L. X B, ATFTE DR AR G FELL (MHD) A, /52 M A G G375 i i i &
EMEER. 14, BATGINAS AT L i i) AR R AR 0 B e /LD

(6, +u* - V)u* — (B*-V)B* = -VP*, P:=p+ 1|B|? in Q*(1),
div u* =0 in Q*(1),
(3.2)
(8, +u* - V)B* = (B*-V)ut =0 in Q*(1),
div B* =0 in Q*(1).

Horp B RIXI QF WY, XA 7 R AR 1) 2 AN TLASE W BB R s 3, L
HHZ A () #RERFRAA (current-vortex sheet), 75 H B 7t L 3RATH BEERIL 4%
F

utn=u -n=T()WIBINHEE, (BI1ELFFM) (3.3)
[Pl :=P"-P =cH, (FEJIFHki) (3.4)
B* -n=B -n=0. (BESEEMN) (3.5)

Hebn N T(r) KT QF (1) — BT ANE ] &

F . R divB=0 ARAFEM/HBSATRRZG T (FNFTENMCKRBRK S, R
AZLAABR), CAVAR R R AVA R PR AR i R P A Ak, I R A% 3 B ) AR 396 L i 79
A

I AREMH(33)-(35) R, AKGREYS, LR, BHHEABR @ LT G {2
B 77 @ 7T e AR BB, SR, RARESHEENE B [u] £ 0, X8 8@ A%
MR RABBHELGEE@EE [B.] 20, B E LA AL BLR j* = [B] xn, A
Fem M ARNE “RIRIAA

PR A TR SRR 45 1 -4 B 4K B e S e, AR B BRI (AR
AR ARG OL): — O3, AR A AR A A AR, X AR R
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AR (R, 5 R A R AR A SR, WA T 7K 7 B4R F 2 AN AT BLZBE 1))
T J7 I, AR R SR b R T 2, BIAnORRH R HERE
15" (heliopause), HAEMAERFH RFIERIA A, 2ORBHR (KESEE TR) MK FE B R S ok
I A& — IR A, 2 AR K P 2R 32 5 B 30 ) 8 sk Je, IR PR O I R (R
LT 85 H IR AR ), R R4, BRI HIE” HERIZTH, 5 #5RK KRS RS
IR BH 22 2 A1 R 41 5 IRV I I I S5 B TR “BR T (TR 10T B 1 1 5241 (3.5)).

HRMMK R o =0 0, RNTFELLH B D) BIn—ANEIEAE (SEPr B2 Xt
WIE BRI, A WMEROL, WA 2/ e O FE—/NEINT ), (&7 St 1t s 2 PR N 3A B 1E
BHRFE [(1) EOETFEIT. ZAFKBFRAE Syrovatskit 2645, BAATEA AR

|B* x [u]|* + |B* % [u]|* < 2|B* x B~|*. (3.6)

XA RLAE 1953 R4 Syrovatskil $eth: ZAFE R K I, &8 %1F(3.6), Wan L
] R K IO P 2R VA 7 R I e 4 W () . R0 4518 7T LLTE. Landau-Lifshiz-Pitaevskit (1)
GESA BB %) [24] hEE] 2% b, Yuri Trakhinin [36] & 4™ UEM 11X — 214K
W, Morando-Trakhinin-Trebeschi [29] F “XUHIXIFRAL” 1771245 2 1 2 AL 7 FE MRV
FAEPE. TR AEZRPE R R (3.2)-(3.6) PRI SRk U2 B DRI A ). 749 380 2 A0 7 2 11D gk P R it
b, BADETHE—ANEE HENR T VE S BIHE L 7 FR AR, 6 B 15 2 i fg e v LR PR
it EANIEL AL Columbel-Secchi-Trebeschi [13] 453, {H & JE 22 P 1] 85 i 5K 47 2
PR, BRI ARE R A — AN SCBE RV L 5 A A AL, T Bk — Dl 340 53K,
PR - FAR-55 36K [34] SIS Shatah- 85240 [30] H0751%, FAEH SRR [39] f— /M8
15, BAAER T AELRPE ) IE e %, BIIERH 7 HLIRR A 7E Syrovatskit 254 R I AEZR AR E
.

K LR, Syrovatskil 2R AT LUK I S TE I PESE & 3] H7+0-5(T(x)), BF A ELRTHTK 110
THEHUK 0.5 BriENIPE. TR EA R TR0, ~F35 i 3R IXA T E B 3500 0O 7 38,
It Syrovatskil &R R 25 L4 R 88 1L FRA T HIIL I DTk, 1X 2 R 0.5 B iEml
PERTUA AR BRI ARE (BIsiHFAREMH(3.3)) K—METEISEIES. AT E, &
WA E T2 R EEE T(1) = {(x1,x2,x3) 1 X3 = Y (1, x1,%0)}, BEETHI(3.3)8 0

Oy =u-N, N=(=01y,—-0,1)7.
X FESRI (R4, ATk 2 W O,u - N IL, SX AN (3.2) HH I 26— AN 7 ARG SR B
PUXT, 2R BB, LR A 3
1

D?lﬂ — 5378; — Bl_B]_ — [M][[M]j alajlp =, l,] = 1,2, (37)

A,-j
A Dy = 0,4w101+w20o, w = $(ut+u”) JXTUESE. T Syrovatskil FHEET (A;) B
EEf. XBE, D FUZ g ROl T s R R, e R ehmd piiask 8
FEA AL — R AR

1d (/

2K AP BLA Sobolev 8% PR, AL A& AN EANFRE H” o2 XMl 5E M 1 oS
— 3K,

H—JiE, & oo > 0, MRS R e 288 Syrovatskil 25/ tHREIEEEME. 8% b
K, Tk IR RIGA T EN ML (3.6) Mt 0.5 . HAT, X7 THIERA A 1IEM
R AR BOAIER], 2B WA S S AR AR U5 T A .

—r—1/2

r—1/2—
0 Dy

2
+10 oy

z) < 5"”2((3.7)5’\]2’51‘2),
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ﬂ&éﬁiﬁ: B S 1t 5 I IR B B R 220

A5 AR AT I A, BV EEAN D A, BB R i R K

(0, +u* - V)u* = -Vp* in Q*(1),
(0 +u* - V)u* + p*divu* =0 in Q*(1), (4.1)
p (0 +u*-V)S* =0 in Q*(1),

Hrr §* Sl (entropy). WAEKAFATH

u on=u" - n=T()REIEE.  (BIIELTHKAT) (4.2)
[p]:=p* —p~ =cH. (IKIIVH#FME) (4.3)

XY RAE, BATIE T E RS, WREIET p = p(p, S) REEZNE %, HRXT
L p BRIENE. O T ONE, RATA LR WAL, MRS (1)S NWEL, (2) p* A
PR IER R A Hod e tE (1) HE K (RS &), 504 (2) ZU4FH, BN
EARIE T TR AE N — i X 2 AR U, 7210 S R AL

4.1 BEEFHHOLEMN

AHECAN T R4 &, o R 4aii B 2 1 A3k otk O 88— N7 R R B AR
BATTRERARR A p BTTHE). M—NEE N v, BIEN p, IKJ18 p BIRT RS8R,
P 1E SCZRAEFIEEERA ¢ := dp/dp, & XLHAKIBHFE (Mach number) 24 M := |v|/c.
AR 2 WHIR, ATEIEY o =0 B, AA]E4ai i im i #7E Sobolev 2 [A] HLZIE R
B I E AR A . AH R S IRAR T R Aa iy, RIME o = 0, AT AT Do 4RG3, 7£ 5%k
M > N2 [5E &R U MEEEST Sobolev 23 Al ) R#E £ (B0 U-U e B, TidE U € H”.
KE U RAERESE, DT V2, —BORUIRAIE QF HEL U KIEES AN (£9,0),
HHAZIREE 5 2 9] > V2¢), 1BFE =4 TRk 2R LE R [21].

TYERUAR) HBEEAMM > V2 i Miles [28] 2 H. #%% I, Coulombel-Secchi
[14] 7£ 2004 FAEBH i 5K AT AL 7 FR AR AFAE M2 L B . FUE B I 2 R A 7 2
PAE T A $FREID 81 10— P Ui 7 R4, 7R 78 HL 2R PR Ak 1) BR824 11 FRUE
T35 77 R B B S BT I RO [ A S AR A

2 2 2
(E), ! ;vl) v+ [vi] 521//+%V(p++p_)-N:---,
%77 FE AT LU — 2ol Sz oy A (T RS B RE AL TE. ML B R @R S, Tk —
R MRAR Lt 1) R, FRATTRE AT B E AR 2008 4, Coulombel-Secchi [15] #f Nash-
Moser EARHI 7 VEUE B T JEZe 1 1) R 3 5 M.

BAE o > 0 B, RiTK I CE A FAr ok H IR, DR & e 4% A1 2 mT LA
FHE. R BRI AR A e = 4ERE OLER AT LUIETS. Stevens [33] #EST T [16] )
PIENIATTE, SER T IZ—IEM], 430Kk 128 L.

4.2 FIEGEHEGRIE

AT FRAERE IR &, RIS S 5 M > V2 AROL, (A A ZE Syrovatskil 244 (3.6) L
L, A4 R P B AR Ze MRS E M — B e ALY, X ANEE R HT Yuri Trakhinin [37], FREt5E-F
NI &j0 [ | S5 AT A .

AT 45 MHD B)Z510AH [F], (E HAE R J7 3% A B0 B8 28073 1) A AAN P s 4 1)
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LA AR KRz, BATRE R4 MHD J5 FEA R

0=(0; +u* - V)u*t — (B*-V)B*=-VP*, P:=p+ %|B|2 in Q*(¢),
(0; +u* - VYu* + p*div u* =0 in Q*(7), (4.4)

(0; +u* - V)B* — (B* - V)u* = —=B*div u* in Q*(7),

div B*=0 in Q*(¢).

78 H S B RAT A kR T kA

ut-n=u -n=TQ@)RIBNHEE, (BhI1FBHREMN) (4.5)
(P]i= P P =oH, (EJPTHi%&L) (4.6)
B*-n=B -n=0. (BESAEEMN) (4.7)

ZHTRANEER], A v AR i ) S 80T DL . e BE AR ). (R0 T R4 MHD 1 5
FOWEFE WA IMES R, R IR T (4.4) P R R B LT FRIZI Bdiv u. iX—
T RN BRRL T FE (B = 0) 2R AJE4E MHD(div u = 0) i 5 &5 B, HIAHR X —
T SECT BEEAE TR, Sehr b, S (4.4) ) L2 RER P E R R T, X TR ik S
JEJ1I -VP 30 HH T . (0 RBEX R FERIEE, A VX VP =0, 1 VX (BV-u) %)
R—MNMLE T B SR I X5 TR SRR, B G 2RI 45 WA N RE B Y
WBR 7738, RS FERUTUA IR A 7 SR, 283 4 U0 IE B J5 30 e 1 [42), 1H2 A
KT FERLR B — AT, PRI TE R S SR A O PR

M —AFAEF, BTG MHD [R5 R 7] 802 — B 0 28 7 4R A 2 5 4% 4R 16 B bl T i)
LT R I AR A R B 2, R AT S AR AE 1982 4F [10] GIN T FTiE I & 1) Sk
Sobolev Z¥[8] H™ Rl Hheik: i) A0 0 10 i) 8. AN X 82 2 25 18] R2 x (0, 00). FATTH
DI 34 0,1, 0y LG RUE T x30; PAE—I S50, 32 mSH 6; MIEZM S, Lhr
by XA, A1 EALIRER EN—MEESEE, BFERMYIESBIERIME,
105 1EI & ) S W8 AP — B ik i) S 2O0R B V) 1) 308 B R 55k

FIFH X 2 $as 18], A 17T LAF Lax-Phillips XHEEI 5% (20 [25]) UEBH A E4E MHD
FEL YA 0 TR P A 1) S ) P . (BRI A I R, AR R R e A SRR,
Rtk H AT g5 3 [6, 37) #B2 ki T Nash-Moser TR, M H Nash-Moser 1541 1
fift, FOCTEYEWMEARZIR 2. B0 [37) M4 R ZRYMELE H ™ (m > 12), 15 I = 5%
HEEVELE H™ o, ] SR SR/ 31 B, 3R H m BOK, AR 6N AR X 4 {8 1
EEiVS2E2
4.3 KRERRHYCIRR

X TR AR iR AR, o > 0 B BLRR T [33] Z A e e 1. i, &
RN THT 5K ) AL [V R G T H 408 0 PR Py R e T ) S L S ], & AT R 2 k. T
[33] BT F (94 iE Ak 7735 51 N ik 2R T, BEANIE B G BG4, i FLIX AN i e a3
BRF7 5 F2E 2 AR AR AL, e DU TG S X 8k b (R T AR B T —A R 2 Bk
(1) BRIk, feTS 4R 30— AN v 10adyk, SRR B 3R TH 7K 1 0 m] 4 i B 1 FE 2R RS e 1, 2
—AMELAS TR S )

F—J5TH, B8 T Stevens [33] Z4b, e AT AR RS E MR 45 R AT Nash-Moser
AR, AT AITAS 2 (0 e AH L AIE T = #A TE E  E R . EH R R o, B
LRI F 7RI AN RAR BT R 48 MHD [ ihid A a8 1 S 5 ok, 200 [26], 445
FRA AT XA AT A M. FOER B 5| “THIEIETAY Alinhac 3%
B ORI P T SR ) S M RS R VR 1R SRR O, i A R AT 2 R E BRI
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AORBOBING S, T 710 ST AT LT MR % 1 55 D A0S 15, SRR 52 MK
TERIPERI R REA 1. 2% F B0 TEAE RLEEHE ™ [26) BU0 4% MED B sy i B, bletci
6, 37] ZES, WEIRMA JEAE e (22 WEIHFERER M.

HE—2b, TRATTLAHAE D] A5 AR —— 30 s T IR A s T (P50 ¢ —
oo}, 5 1T 4% H 1 B ELISC B T P50 F ORI, U F 435 P A B0 o 0 T
PRI P, SERESRAR 4 TUES T R RS A0 KHI AR RO B B RS0 4
RO L. S L A R A RS BRBRT A B, BR At L0 A5 FE BARR
S, TR PP P SRR AE. AEBCOTTH, FRTIEA (ERTECE %R, R
FRRE N L

BESh, REICE I I P I, A% B R ORI, 1R R R b
St IR, (LMK (elastodynamics, FIT-HABHEREA FRsh B 48, 910
PR D) HORE PRI SRR R S ARMON T VE 10— DS, BT A ARA A0
B ER, FLAKTTLAZ LR E 5 T 5 B AR — A A AT 5
7,8, 9], SHEINL, LARATHAARFINSL, H B H R AR,

T TR 453 4 R I e, DR TR, (SRR, 9CH b, MR
AN KIS TR E S, F AT AR AR DRI, T LR T i FM SR (0BT,
o) Eh B B A 7 2 L FOARL L, AT SRV 7 B AR I
M. HEE, T30 o B AT R4S B T LA R 0 O B, AT P
S T FLREFT LA HRRIE R BEIRR 4 B 2% K 1.
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AT AESCEERETH ) B 2 iR, B R TR B AT IE SRR e R B . SN
R SRR, 245 B T HEZE R I E M. AR A K o 7 R SRR AR 1 [H]
SRIAT PR, B BRI, B MR R R AR H A, 5] IR X B S B L R
4y ) 8.

FER ZHERFE R, BA T W N L 4L i s

—Pu+ ) 0tu=0,
=1
u(0,x) = ug, O,u(0,x) =uy.

TERY D7 FEERAE o, FRAT1 20 T i AR I R iy ik, BRYE DT FE WA RN 356 1 O,u FFC T3 1H)
R4 FERRFRI 2 ST, AT WS e Al T s, R AR A T, RATRTASRAS Lik Jr 72
PR e LB A R A 0 T P2 SR
1.1 E—RAVKGE

IAEFATE T — AL I A AR AT IRAT A AN (R e A —02 + Xf, 07, fl
BhHERE, IXANTTRERT LG R -7 + X7 2y 810, F gy RPAMFERITER. BAERNIA B
BIXH g = (i) RRMFRE, WATRVE g RATM—AIEEXBRIFERE. SBB T 5L
WA, BRBADENR ¢ & MEERFE, ¢ WTLGE—NBEE (1,x) 2T IRIHE R B £
g(t,x) = (g;;(t,x)). WAk, ATEFTEARK ¢ WIEETERT (r,x) WL —E M —ZE, BB
{1 — SR I % 1 )

AP < Y gi(tx)E€; < AP

ij=1

E. R B g AF A EE R S AR AE T F R LR A FTIUM. AR UM, KA1
F—ANERT—ANEELEHN. AR /HIPLIRT, INEZEME AL ARG LEE R
K, TR EXE T RIS, & —f, ZMNTREREZEFGETHAH, BRiILEE
SEE A LA T GIARET R (=, +,---,4) ¥, B AT Lorentz JUFT. FTASATT LAMBIX
RV TAER 37, 50 8ap(t,X)Bapu =0, EF 3y =8, B (gap) R—NMAREL (gap) £EX
AT AT R AR (= 4+, ,+) 8.

F.ORFTERRTWIE. ECBFRRMNK I @ AT UAPMA LAY B Fo 3 E, 345
Mazwell 772 £A 408 B fo E HARGHE HA. RIRZ, AT F K856
Einstein 77 A —ANK FAZE. 3t TR T ARG, T AR BT T 432 I F 69 iR e 2L 7

EEERE: W5, 2018 FHCERIE2:BE, ifH: waterproof123@mail.ustc.edu.cn.
FatHEE: 4 A 9 Hkfa, 5 A 23 BHE—M&, 5 H 25 HESZ. fafldnt: £Fik.
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1.2 FHEBEEM

TEHEGT T RR 22 2T B T SR AR & PP & FE R B o 5 F8, FRATIE G T H 1o I R 10
MRS, LCAnFRATAEAT 4 S T BECRIE 5 7 77 2 B Il R0 At 2 A7 AR ME— 1, f 4
PR WHE R E SO, /£ PDE /1, FRATFEIFE G CIX LLa] B JA 175 FEAIE ] 7

Ogu = =02u+ Y gij(t,x)dyu = F,
i,j=1 (1'1)

u(0,x) = up(x), du(0,x) =ui(x).
FATRRITRE (1.1) & UREB) @E ), A T IEIAR R AFAEmE— HXWMEIESARM. 121X
o SCEE R AT B IR A AR LM A AR Stk gk 07 R ) JR) S E
1.3 Sobolev Z=|]

Sobolev ZF[A] 21 —%%>] PDE WA E T H. fER 2, X s vl S — 4oy
FEEFER . 0 AT SR A 2 P AT e S EOTIERIMAAAE. FTARAITE S Sobolev 7
A, S5ACPTIE “RT7 RS EESE SCT e 8. £E5I N Sobolev 7 [A] [ FAA € X
AT, Ak E A IPTTIER RE A T

- 1d
_92 E n 92 -__= 2 (5. —9ud:
/XERH( 0 u+ 2 0L, 07u)0,udx 57 /Rn (Oyu)“dx + /n 0; (O;ud,u) — O;ud;;udx

__1d 2\ 2
=-37 ‘/Rn((?,u) +;(6lu) dx.

ARG w RGN E w M u RS TT BT 0. EliHR)E 55K
B TR E R, LR S, 2B SO I SRR AN G, JATHE L2 55

/ Oiupdx = —/ Oupdx, ¢ € CZ(R")
Rn R"

FET AL, BT ABRATEI N HE X
EX 1.1, &R u 89 o WHFHRAEE, PEBFELT, KMA 0u=v, RHEFTHLEEY

peC>, KMA
/ udpdx = (—l)“/ vdx.
R}’l R}’l

XBEBAT TR F T 0 Al Evans ftserb—3, AREREE 7T AL AR [3] %
(FER, N T HBEMIE, JA1L 6, = dy).
EX 1.2, £ u AT Sobolev T HYR"), EX THEMY |a| <k, u 89 o WHFHA
EHBET L2(R"). &ML u 89 k B Sobolev E# A

el ey = )" 10ull 2oy
lal<k
Sobolev IR 247 ML, BT R A ZEX BACE. sk b, RATEE SR 14
G L BB B R AR (FE VIR 50 A AT B R T B4, R & > o i,
S EJRATAT LUE X HE RSOSSN, VAR BT IAZ% Bvans TIASTLE. Ny
TP ERAIGME T, BATAE—A Sobolev HAEH,
EH 1.1, AMEEH k> 2, A& C=C(n k) 47

ol Lo ®ny < Cll@llpk mny.
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AT AT L e e e SR R FE T
ENX 1.3. MR u RFA2 (1.1) £ [0,T] xR" 895588, & u i#H 2

/ /Fgodxdt—/ / 90+Z(9U(g,j¢))dxdt

+ / (0, x)uy (x)dx — [Rn @ (0, X)ug(x)dx, Ve e CZ((=00,T) xR").

SE. BT X RET R, BgERA R
— AR TR AR

WERHTHE (1.1) R e R e, me SHAERREEM . BRI Gronwall
ANESL
SIIE 2.1. 4 E,A,b R [0,T] L9dEf 8 B L A FiFE. LRMNA

E(t) < A(1) +/ b(t)E(t)dr, 0<t<T,

0

N AV AE
E(1) < A(r)eh (T,
E. Gronwall RF X a4 T EMGHHSTF X
%E(r) < b(t)E(1)

A RERKAER. L XA R AR, KAV T AF 2] Gronwall N5 K69 &4 X, A
AR B Gronwall I3 X A&+ E(r).

& (1.1) E’J%ifﬁﬁ‘m%'ﬁ —02 + YL, 02 Uik FEUE B B A ), FRATIE TR IL
[ 3R b 9, u FEXF 23 [AMEAR 43, I SR S () 3 id v I R0 e BE AT AR 7. B ik, kA
HUn N e
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0l 5oy 0 <C (10l 00 + [ 1B o
0

X ecfot IS} |I58U(T,')de‘r’
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WERR. Xf O T L 0u FEXS T EHAR > H
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Rn Rn
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FER SR, BATER BB u BRI TTIEAL (R x| — oo HT) G SR T 0, AT 3K
T BIAT w7 R A A2 TR SR R AR 7 (i, BATTRT AV I — T 0, PRI HRATA
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CH([0,T], H*) i# & Ogu € L*([0,T], HY), &A1&

1ottt M < € Y 1070 M+ [ (e, e dr).

lal<1 lal<1

Sk C R—fe T k AR gy, 895 W Sk % 89 &

MR AR T

P& M TR WA DUE A S AR M SE TR S e < 3 IR AR RIETE I, XF
TR E4EMETE, WU B S MR RIE TR, X — 867 A BB # v L2
% Luk TR .

EL M TR, IATE RIS W FIL 2 2 M SCT BIAE. 1338 0T LLRNBUFE Bl oy 7 72
{2 el R =0 B S e W (O 7 St By L o ] S S el QS I i 3 (R de b e
(1.1), ABES R R ARRIETE 2 LF R A B, T2 0T AR 3 — 28 fe 5135 D 3RATT A
SR SUFHREME, XN HEIRA T TR 25 N R RIH Sobolev 73 [H] 55 ff A1 55 5 40 55 K
&, RATE T EAE B — 02 bR 2 A P B R BRSO UL IR AR AR AR FRATTR AN 0 E BH B AL
IR AN TT R AR AR, O ERI)1338 7T LLS5 (2], [4]. ZeVEBT PR MR A7 AE 1 75 ZE A5 B
2 B M i) Hahn-Banach & H.

EHE3.1. 4 ke€Z,T>0. FFHEEM uy e H*(R"),u; € HY(R") AR F € L*([0,T], H*(R")),
B TR (1.1) AAEE—69556

u e C([0,T], H*) nC*([0,T], HY).
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e R EEE

FEIX—ih, BATH 8 TTHE

- afu + Z 8ij(u, 0u)o;;u = F(u,0u),
i.j (4.1)
u(0,-) =ug, 0Ou(0,-) =u.

Hr gij, F € C%, (ug,u1) € H* x Hk*l, F(0,0)=0 H (gij) T 4T — B5URR [ 25 A
BAVEER BN TTHE (4.1) 1m0 14, R R 10 A8 P A A M — P RS0 9 A ) 8 At
PE. BB VB R E AR, 8 108 5 A Rl

ueCY([0,T],H ") nC([0,T], H*).

IR (4.1) B HE E T A G IR Z N B AP U AR S5 R, Eetn (2], [4]. 1K
BBt AV TR EIAN k> n+ 2 FFAROGIE R IE € ) soar. a2 i, A 1 ORIk
LA TTHE (4.1) 2 JRERIEE B, AT EXTYUER Sobolev TN — L8 2% 4.
EIE 4.1. BIX k> n+2. S THEEL (ug,uy) € H' xH*, BAE—ANF ||(uo, ur) || gexper H
X0 T >0, RAFHA (4.1) £ [0,T] LA AEE—435M u e CH([0,T], H)nC°([0,T], HY).
PATR A IR B 2 R 4 et R B 7R 207 7 A Jdl 1270
WE 4.2, % f:[0,1] - [0,1] #HA |f(x) - f())| <Llx-yl,0<L <1, M&AAE[0,1] £
— & BT f(é) =&
XA 8 B AT DAHE) 31— 5 45 B B =[] 1R P - 2 D) 0T B 22 ) 4 B AN 0 R (1) 132
FHATLATE [0, 1] B9 s 25 BB, DAE T BEAR 5 SHIE .

MEER. id
A(u) = sup (llu(t,)llax + |10u(t, ) ge1),
t€[0,T]
175 & 1A

X ={ueC'([0,T],H* ") nC°([0,T], H")| A(u) < a},

XHEE a, T RAFERTER. N TERSEN v e X, BB LM

—02v+ ) gy (u, 0u)dyv = F(u, o),

v(0,-) = uz, v (0,-) = uy,
FH 2 PR 7 PR AR (K A7 AR ME — PE T R PR (K v SEAFEME—T), H.

v e C([0,T],H*) nC'([0,T], H* ).
MITTFRATAT ELE LA ¢

¢:X — C°([0,T], H*) nC([0,T], H* ).

THEEATV ¢ 22— X B X BTG, AR Ao IR, AT AT AR B Y )R
EE .
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HARRATULA AT UGG IEH) a F1 T, 115 ¢ RS X BREN T X, BIUEEH A(p(u)) < a.
R R E A TE, RATH

1601l + 10,30 (5 Mlges < C(ltolls + N o + /O IF () (7, ) a2l
VST P (u, 000 s BT

IF G, 0w)llger s > IO F (u, 0u)| 12

la|<k-1

Y DU 02w, 9u)0f w95 u (DY du) -+ (91w
la|<k-13%; 1B:il+X; lyjl<k-1

FATEAL B AL LI e i — D ANE S AT, | Sobolev H N ERE, A 1K0IE
0%ulles < 13%ull,u2 < llul

H%"ﬁ’

W B < &2 Jolif

102ulue < ull.
XF(0,0) = 0, ulls + l0ull s < a, B Bheh LTAGf, A1
(s 00| < C(Jul + 10ul) < C(Ilulle + | Dullos).
R

> > (08 F) (u, du)dE udBu - - 97" (87 du) - - - (92 o).

lal<k=1%; |B:|+X; |yj|<k-1

HEL A B Ey > B2 BIES (|F(u, 0u)llger, TATH

IF (u, 0u) |l grs < (1+ [Julle) sup (Ilu(t, e+ 10:ulz, ')IIHk—l).

te[0,T]

NIIE= 4 REE]

sup (116) (8, s + 18,902, s ) < C(lmollas + s llgss +T(1+ @)1,

te[0,T]

B a = 2C (luoll g + s llgr), BT /s, BATATLAEE] A(6(w)) < a, NTTHHT ¢ M X 3] X
s

RGN AL T DLt B AE R @ A1 T, S RATRIMT ¢ J—ANE4imus, B
|A(¢(u) —p(v))| < LIA(u—v)|, 0< L < 1. (4.2)
RATIE ¢ (u) B §(v) HILHE BRI, 6
— P (p(w) = o) + ) 81 (1, )3y ($() = 6(v))
ij

= F(u,0u) — F(v,dv) + Z(g,-j(v, ov) - gi;(u, au))a,.,qs(v).

HEREBERAE (p(u) — ¢(v)) B R — AR, WAL RRIATTIER ¢ K X BB X 1
T 93K 5 B B W A A T E . TR B R FR A AL, IX B 40 PRI IE B 3l 52 45 TR M ) 13
=T i
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E. BIERAAR G S IZIER T RMNMKERNE T < INLT, RIVERBBEEC. a < b 1819
ABAEFHK C, 4% a < Ch. BAHAELEIANEEF KA B R % IHE KRNI R XOF R
C 2 RA% Y, ARAEANRTTURAY B, L FFIEH 69 K5 2 A0 70

F. AEXEEANFMEZATNEE E g WENFRARLEM (25, ENFHARSHET
P2 RE, KNGS TRM TIANFMF). BARAZZRAMNEL 2R HET, 22 RMNZX
MNHETRER g mA gij(u, u), FHEAVGBERZT, FI A Sobolev N, HAEY u 2 & T L™
8, K g i(u,0u) HFTENEEZR—ANARE, Kin g,;(u,0u) BRBAZNFHARF
H(BH g FA—NRBIH, CHAEE (u,0u) £—NEELERIL)

iE— S5 R IE

L RATE R, T AR B TT AR, AT EEAT k> n+ 2 ROGEIRATN
Sobolev ik A g B I % 2% [ FE AR 2 G IE K. IX 0T HE Y IE N PESR T EE RS mii BEsk. xf T
— LG BARRRFIR AR LRI TR, AT TRT LU 7 AR B B S b itk — 20 BRAR T R ) 0 i 2R x
IR R ESR. EIX 7 B, A5 T2

- 0%u + Z 0%u = udu,
i (5.1)
u(0,-) =ug, 0Ou(0,-) =u;.

T IRRFERITT AR, e EIRATTRT DA 75 R Y =) F ol 2 P X AME B IE PR SR BRI & > 2.
N T FEEATHIER, & a3 T/ E—AMMhh
5|32 5.1 (Product Estimate). 3£ &6 k€ Z,, A

Ifgleax < I laxliglies + 1L Nlllgll
R 5.2. B k> 5, MFEE (uo,ur) € H* x H', B —AFa || (uo, )| prxrar H %
8 T, 5742 (5.1) £ [0,T] EAEE—FH ue C([0,T],H ) nCO([0,T], HY).

MERR. id
B(u) = sup ([lu(t, ) ux + 10:u(t, )|l er),
t€[0,T]

FA175 18 1A
X ={ueC'([0,T],H* ") nC°([0,T], H")| B(u) < a}.

FATAER ¢ /& X 2 X OB, 28 MU 73 AR I AT ASRBAIE .
HIREE AL, ATH

1600l + 10,60 (0. < C(ltll + sl + [ "ty ) e ).
BATFIH 513 5.1 KAEFE [ udiu(r, ) e dr,
/ N, s < / 16w (1, s
</ (e, e

t
< / s Ml e e
0
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ST sup [lu(z, )|
1e[0.T]
HA MR —AAESHE T 51 5.1, &) — AT HE T Sobolev IRAEH 1.1 #itdk
(NEE]
B(p(u)) < Clluollax + llua |l s + aT).

AL @ = 2 (lluoll s + llnllger) DA T = 5, 46485 ¢ S /MM X B X BT

R St 43 B B, R X B X (RIE B 58 A A . BN ER 15 3E T LA AT .
T [E) A (R 82 AN Bl e B8, FRATT AT DA B g 11 J 0 e Y. O

E. X BEEN Sobolev ENEATEET 2 FRE A RGBT, L4 T AR ENKE
ZRER 2L AT REATL LRPONERERXLET, BXBOEETARE LY.
E. £F T2 2RGERTIERMRA uou B9 FTALRIHE T AT EN AR R, RS
HT AL RF L@ udu % udu, RIXEFENMK T ZH 5V ELT B BIER M.
. O XBELFHIEILR, BREFHHESHFR—REEN— AR, Bk, XEHELF
PGB T R AR B3 R v, BTIR B3R, BPRA R i EAAR %] £ = 0 FELAG— AN
BRI X ] [0,T] N, HAZGY A G A — LESRM T miiey. 1223 TMReKerEigh,
teheff eyt e R FRXEHXAT AR, FEE, KMNTREH AN EN RPE FIREH
247 B BRA SR, X—pRAETALR (2] R FTAHL. 5—F @, &%
SR T AZGY D AE AR, B Ao RAAEL 0 R %), RN G IS TALGEAE [0,00) LA
A T >4 B, ARTAHEG. w3dTF n=3 FH, WNEEZIAN—ANFBG “null
condition”. ST ASI [4]. [4] FEABT EHFT ARG @ ES T k.

AY v
S22 3Rk
[1] Gustavo Ponce, Thomas C.Sideris. Local reqularity of nonlinear wave equations in three space
dimensions, Comm. P.D.E. 18(1993), 169-177.
[2] Jonathan Luk. Introduction to Nonlinear Wave Equations.
[3] Lawrence C. Evans. Partial Differential Equations.
[4] Qian Wang. Lectures on Nonlinear Wave Equations.
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a2 g,

= 2L

AL EEH PR ) SO XTI BI 7T BN BRI 2. 3RATTRE 1 S0t i 70 17 S i — A 1
B, R G, ATSEINT SUEXT IS I — S AR 2, DAERXS AR 2¥ Einstein
scalar 3 A 28 PH R TN 2 (0 H FHARKR. A 76 IGBERR PRI 25 1) J LRI B 5 1
Nz 2 5, AT AE S 573K (trapped surfaces) FIEALHI]. &)a, A1
FERAET SRR HIE T HH 220, Penrose B, FF45 HY — i WL 2= FER G FR B 25 A
Einstein scalar 3%/ Penrose &, X2 Christodoulou 7EAXERXFR IS 25 7T 1) &R
FIEHRFEWE R —.

75 5P 14 51

FATFRIE, | SRR A RATIRAE 7 FEIS 8], 25 (B A0 5] ) (B BE Al 72 SCHIXHE
BRI MR T T Lorentz JERL (RIFF S8 “—+++7 MER) 19 4 48R0, H B
AR ARER 1IN 51 ). X — R IR R N KK P #4 SN ) Einstein 7712

1
R,uv - §g/1vR = 87TT/1V, (11)

e R, R (u,v) MIEM Ricei 1%, R RREEMEK, 7, REEHENHKE, ©
ASEANTRNE /I RZR TS

PS03 35 38, Binstein 7 B R R RS TR 3600; 05205 b, BUE R MAL AR,
e ML, 10 A 2 I TR S i o) T AR AL FE R, KRB A 4R A
TR RORE AR, I T N N G A LR

F—RABER T Minkowski B ZEMEMMF I EE S 52 K. Schwarzchild. 2 &1 2
FRASBONPRER. X, AUK) T = 0, BN EBRGFRFIE ST 2 3 NEAR, TR
f . a7 B ) A T AR TR, W DR B — R R

2M oM\
g=- (1 - —) de? + (1 - —) dr? + rz(dG2 + sin? 9d<,02), (1.2)
r r

Hr M B—AEEL nTUERL Er=05r=2M XWA S CHIRSZFRZPITK 3 48T
¥ b)) FERIFIE REM, X 51K 7 AR B K248, A6k Kerr 153 1 gk
RPN RO RAE N, AZELENIREE, VI3 A) U 15 22 Mo AR PR T B A 72 4.

HE| 1965 F, F B AYE 2K R. Penrose KK T @A “Gravitational Collapse and
Space-time Singularities” )3 4 3 #. Penrose HfntEHbRH 7o #AhAZ & LTI J7
EWFAL T AU R e R SRR, HHAES: — MRS % ihm LS, FBUF
BENRED, WET—MHRNASEE—NMNAE Zgehm; EE8EMNYIERGHR

ekt RUNE P T2 5ARCE B Z AN R RS, SO AT
AN BRI PRIR AHIE B, BB IIEEE 7 LLS % [11]. Penrose iE B IX — 250955 A

EF(E R, HEYL, 2018 L/DEIEERE, MF: jz2001dkemail.ustc.edu. cn.
FafFEE: 3 H 31 FKFE, 4 H 28 HEi—wkigeg, 5 H 1 HE:Z. Fitkgni: FhREA.

61
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Penrose 5 — &7 s . BOR EAKE AR B & RURARE VA 45 T RIS S i — > Z4E(%
K1 (trapped surface), T )5 # 2 — N ER G2 5. X ICEENCRAES 70T — 2K
JE.

BIRCEA 17 w0 B, EIRA I A FNE A7 3R 1 e 15 DUB . 32— =M R T i)
A TAE 4 20 tHAD 60 FARE] 70 AR, X T — N IR E R, Fs b X —
] R i 7 R R R AL

TXA 7] 70 1) e 24 fifp e e 35 4 805 28 D. Christodoulou. 20 40 80 XK, fhA1E 4
B2t S. Klainerman A EIEM T Minkowski fERI#HLfaEME [6]. XHXEA LL 514 T,
MR T H MBS TG, AERRIEEL T ER S T — 1 NEHR. X SCER LT
NT 2 )5 Einstein FFEFFFLH “BRA” 20 4D 90 4EfLK, Christodoulou #F 7T 1 BRXS Fr 2%
"~ o Binstein brE3g 7 FE, HEM, £id— KA SCERH R, HEIESEL T Penrose 2
R 55 7 M BB . B8, 7E 2008 4, Christodoulou F 13 40 4F [ E], BA—C2 77,
M5 Klainerman — [FJ#& [ 1E, 167 589 TUANE [5], ZIE | Einstein H.733% 5 FEiH L
HAZSRTH TG BN BT SO, i A B G PR HE P 2507 o) R P A 8 e 1 58 SR ) 5

208, FATUL B RS2 7 ok T s — 3 W 7 i A2, 1 Klainerman 5 Christodoulou
PIHEARZ AT Z LN R AW K (W Klainerman PUE IS — T 00 IRIERH T
Einstein 377 F£ 1) 5 3@ € #4, Christodoulou HiT— T T KA 7T 1 = 4EFA X518 7] &
Euler 7 FEMIMIE LRSS, HTEH R W IFA AL, Wi ATE I T .

P XSS B S 3 IA

NEGR T, U5 B 2 B8IBI T 7 Lorentz &1, B[R] W 3E LR E 1), Be 4R E
S (B RUFH) 4 460 (M, ).

BAVFIE, |7 SCHRRARE 5 IR B 25 . [RBRR A ) 2 b 22 23 R SCRHRT IR,
EEENEAT T (B5] J1v] 20g) s oL, Wii2 Minkowski BF25 (RY,n), H n =
—(dx®)? + (dx)? + (dx?)? + (dx®)?, RS AN x0 BRI E]. T SCHXT i,
FATHA AL
EX 2.1 BT EAWENZFHENRTA—FHE, ZHEAACHMRFTL. S TEFH
RE&BR A G2 T, & g(T,T) <0, WiiZa = AL EE (timelike vector); % g(T,T) =0,
WAz m = A LENEBE (null vector); % g(T,T) > 0, WAz mERLTMEE (spacelike
vector). # 3 F AT — R EALR K06 (RER, £26), WAL XA LR
(B2, E=) thik.

ENX 2.2. M 9F% 3 A —KBHE, ZTHaEHN 1. T—KkLhanineast
B (AR, A=), MARAZ S @ AT (S, KrT) B,

5 SRR IR BUAR R, BATTRT LA fa] B A0
NI 2.1, FTA R AR R AR R Y, PTA LT A9 R A A LAY,
R ANSZBR G AN AR I, 8 T S22 e B g i 2. BT
WRL 2.2, AW SRR X AN

XA, AR SRR BB HE SN, V1 2 JEUACE DASR IR IR R AT T AR B AR, Al
XFCARTAIZE RA T SRR, S34b, AT $ 20 Re B3 B 75K B2 ) SR B 24

TERMNBE =N BRI E PRI —



CHEN + 7 — J) ER BRI 421031 10445 63

. G EAAE 4 4B, W Too RARREEE L Ty 5 To RRNEEL; T, RonJike =4
R[] R g K B

I FRA VL 0 RS R RRYE B . RIS R), B R RRME N S R BN ). B
W fRRE, BROGTIRIN 25 8724 0 B R ERON R e A BN 2. 5 5 Bk, T2 (B
Lorentz #itJE) &, A2 HAATR R B BEAIA M. X $5 51 FATE X F Killing K&
.
EX 2.3. M 8 Killing M52 EIFEREARFEAMY RIEEG @ E .

FIH Lie ‘5%, 255 UEH
Wl 2.3. F M L& &aEH X & Killing @=%, W Lxg=0, RFMNH, X # 2 Killing 7
AZ:

g(VYX, Z) +g(Y, sz) = 0

AARVEAF B T RERE, IBABMTR TN — DB FRIVE A, #nT LLA 2 e SO R
I Hs b BROOFRAE ] B AR A B ER AR EE SO (3) 4. X a2
EX 2.4 (BRXTFRASZ). KAV (M, ) RHRATAReY, ZH EOFENBEH -5 SO3) R
PEE)FEE, BINTFHPENTELE M LHREEZ AR AL, 22AR—A 2 £ H.

ATUVAR G, FERROG AR, AT LB AR BRGEER, BRI B A&, AT T R
N R AEAR S FESE LU EX] Einstein J7 2B L.

A E A FRIEEl——LL Einstein scalar 177545l

W M OSBRI 2. IR BRATTA BT 7 BRG RIS 25 (R R Ay B ARKR. VB — it
HIF-, FA 1% FE U #Y Einstein scalar field:

1
R}JV - §g,uvR = 87TT/JV; (31)
1
Tuv = a,u¢av¢ - §g,uv6a¢au¢a (32)

Hrb g &% BIEXHER A, PLETT R BT

Ry = 870,00, . (3.3)
5B Bianchi 1H%5 20, A1 14 sFHE
VAT, =0,
A
Agp = 0. (3.4)

3.1 Einstein scalar 7B B
PP bk, Einstein 377 F2 0] DLEHAS 43 R BRHE S . A2l X a0 R 32 eR R AR 70 459 3
(# A Einstein-Hilbert {EF£):

I = / \/@dx‘*L(—R +2A),

167G

2ETE B, EJUTERAH T () ¢ = G = 1), I SUHXHS & A A S
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Hrh A AFHFZHH RS~
1 4 1 nv
olg = T6:G Vigldx® [-R,, — §g,“,(—R +2A) | 6g"”.

FHHREDEH A, & 6lg = 0, FIFHAE 5> JEEE (Hamilton principle), B A[1§ %] Einstein %77
.

BRI AR IS AN
Iy = / Vigl dx*g” 8,04, ¢,

H ¢ B—NREL X Iy RS, A 61 +01y =0, W0 ERIHAR S REE RINERAT 75
T2 (3.1) #1 (3.2)3.

AT T A 25 % Bondi A44RA1 Double null AR KR KA 5t HLIHF 3R (trapped sur-
face) MIEEHLE, LT HIRAVR CAE D, XERERE T & SR, JATHESR LB
#&, Bondi AEFRECIR T Y3, /5T A Double null AAF5A] LA & FFh = X ) modified
Bondi formalism. 3 0] LAFE 2, 755 4hr it B 2B 2. $H5L ) Double
null AAAR 2 ILAERT 70 B o) 2 R AR 2 —.

I BPRFIAKR 5, FRAT TR AE 555 — /N5 1IE B IS A 3R T FR) T A Lt A A A s e 3
EI 3.1. FEHAMREE M, E3FTF ARG RABR N Z 69 K LB E 8 Hawking
TR E G WK RAF IR &R A s SRR P SR

X HL)IE 2 FRRATA — > O(xlogx) BREEEH.
3.2 Bondi %#5

AFATNA Bondi bR, FESHECH N [4]. &I, Bondi Abrse HYH K Her-
mann Bondi 5| A JGHRAFFE G 0. i E S A48: “The 1962 paper I regard as the
best scientific work I have ever done, which is later in life then mathematicians supposedly
peak.”

Bondi AR5 TARZ JUAME R, AT RN E B E U ERgiH 5, X b ir2
AEIN—AAIE, FTAZ W (6], BRI EIENER KRG,

7] Bondi FHIHIE K T7 120 [F], FATTAT LAEBRXS FR T 2257 Bondi A8h5. FATHRAA EE
HATRA:

g = —a’du® — B2duds + r’hap (dx* — UAdu) (dx® - UBdu), (3.5)

Hit A5 BfE 1,2 HHUH.

A T R B — 2K Z o FRB), O A T B —xri, T N T BIARRIR R
ALY .

BATFINREL u, ERIBRE L g(gradu, gradu) = 0 (IXFEYEE_EFRME optical function),
EAFERGITE T LIRER T T HKE, B w(p) = Length(T, 0, p). HIATTHE X, TA1RI
u HIKFEE Cr(u) RN T EHRBIARRSG [ SO0 HOGHE. FE LTS s, Ellig
(gradu)s = -1, HE T L s BUER 0%, BF550E, KB u F1 s & CAEE (P4 € iR IR
E T R EAELEME).

. EEXE gradu, B -1, BARL u KFEER, B2RFRELEZ AR, KR A8
3t (3 Lorentz JUT) ¥+ 54§78 89— .

STEUL, G BEIR, JRATITEBLRE 2348 4330 43 I 6t 55, ORI 3L2 vT LA B AT & B AH R BERE, 4 [13].
XA w A s SRR BT BRAERT R, TR SO FRAT S AR b B KL
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KFBLAE bR R &, A 1A ARG

SIIE 3.2. u WIKFE Ct(u) ARG, B Killing xE%F 5 SO3) RAGIAT 2
AT Cr(u) PRIEBARE, BEHER s £ C(u) LWKFE S, TERPFEEER 4%
.

SIFE3.280IERR. ATE S X SO(3) 1Em 2= ERIVER, B T 1O Rl (BPA
HIAER). FL, EEREE p e, ¥ Ct(u,p) NULVENTISKIKTEE. HE p SALH
PIZsiEl, 4 =, AHAHS T IEZREAF2N. W 2, 224720, AT E R E X
SO(3) £ LIHIMAE: EE% e 0 € SOB) UK NeX,, 4 ONeX, ThiVs>0 %
exp,(sN) € S,s, W exp,(sON) € S,.;. !

THBATE XH AR IR, TATS BRT L (b5 4 35 % S R A i S AR 22, B 1 =
—gradu, W I BRE S,, WY RIEE, FI L OE—FS5ERT S, V)7 IEHEEEI’J%E
g(l,]) = =2 WIARKIR MK E.

3138 3.3. 4 Q AU LEHMEAN LG Killing %=%, N [Q,1] = [Q,1] =0.

SIEE3.3HUIERA. R4 51 BE3.25E SCAUREE BN &N [Q, 1] = 0.y 7RI % — 5, RE 5]
5 [Q, 1 ST BRI, E e 17, B Lie SH0aH:

g([.11,1) = Qg(, D) = (L [L,1]) = 0;
£ L J7 1A A EVTAS; 2 X O S, MDD, T
g([2.1], X) = Q(g(X, D) — g(L, [Q, X]) =0,
HAp a7 [Q X] RN S, KIYIHE. O

TATEH R ZEAEA. & x My BHIRAR S, o X TERF R 1A 1B ZHA)
1, B
X(X’Y) ::g(VXl’Y)’ /K(X’Y) ::g(VXLY)'

5132 3.4. y A= y LARIELLE, I
Lox =Lox =0.
#a try Ao tr x EERE S, EAA T
S|3E3.4B0IERR. (FRIEE X, Y 5 S, M), ATH

(Lox)(X,Y) =Q(x(X.Y)) — x (X, LoY) - x(LaoX.Y) (H Lie FHI2H)
= [Q(g(VxLY)) - g(VxL, [Q,Y])] - x(LaX.Y) (HHEX)
=g([Q, VxI].Y) — g(Vigx)L.Y) (K Lie 3#icH)
= g(Vx[Q,1],Y) (1 Q A Killing 37)
=0. (FH 5| 23.3)

RIGSEALTHEE, FRATHAT Loy =0. 0

NG ERILERTH AL, ARG

[(Area(S)) :/tr)(dvols, I(Area(S)) = /trxdvols; (3.6)
s A

S
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FRBIN
h= % h= %tr)_(,
HAIH ik 5] #E3.4, BITTHE (3.6) BN
Ir = h, (3.7
Ir=h (3.8

AR PA_E AR5 i 18, FRATIAS 2 55 i T4 A 5071 AR [ e R
g = —2duds — g"” 9,59, sdu’® + r’do,

Horf do FRoR “HERKII AR AERE R XA AN R, B

0 5 0
= — =9— _ glv
s’ L au 8" Ousy s

b 1 5125 S, VREEER, TSN 0, 5 0, MEHEAE. he Uia
=0, T g(0u05) = —g(dy, gradu) = —1, ¥ 1 55 6, 5 o, 1ENFIEIA LK.
TEIERHE SRR 00, BATM— LT TAE. & X

1
{(X) = §g(Vxl,£), VX € TSu,s,

W5 5| B3 ARE B A F], JRATRITE ¢ MR, T 4RI LB iR AR AR
JU 1T, # ¢ = 0. shok &R LA B 3RA 115 3

Vil=-27=0, (3.9)
Hrp ¢ For 5 18U IR Y. Fe b, BT
g(Vil,D) =0, g(Vil,1) =0,

R VL AE S, s MIVIZRE N, BUAEHELE, X S, FYIEREZDIAE X, BRI [1,X] =0 %
EIEHFE] CH(uw) L, W

20(X) = g(Vxl, 1) = g(ViX, 1) = =g (ViL, X).

AT E Ll .

FATESLHRZEN T

ERMEE p e T, B er,ex N 2, MR 4EBRTE b —HFRHEIERS R, KR Ve, =
Vieys = 0 JESHFIEANLL p NS u FIKFEL EX ez :=ley =1 N e, es,e3,e4
SER R AL ZRRAE (null frame), B: B AR — AL 45h528, FLS BRI A (REA B (1)
e, eq) FRIO, MHERIH A28 B —AAREIE RS, NSOk A, B FaRBUE T 1,2 M
Za6ks, F y fy RIS 16 A g,

FEH OB B3R I Gauss 250052 B, IEBITAT LAZ L [12].
513 3.5 (Gauss EH). & ¢ A= g £ S, LWIFEFEE, K £ S,y 8 Gauss #F, N

1 1 1 1
K+Ztr/\/tr)_(—§()(—§tr/\/g) ()_(—itr)_(g)+p=0,
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A& ANZ XL TUATE, B A
1+hh=—-r’p,

P p A—ANBH, HERFARBIL, ©iHL
Ragcp = peapéecp,
X E erp % Su.s eyt 295 X,
NP S B R B LA B, 15 1523 A BB R, 1% SERR & AH e 70 v e A a] b
B35 A SR ERXSFRAE I T BT AR 57 5, FRATH € LI EFRZE 1, e0, 1,1 HESF T FE:
LS xap Ry ARUGH 1AL LB SR BATE A 3

5|3E 3.6. &MA
[L,1] = —2wl,

b w:i=g(Vil,D)/4.
S13E3.6H9IERR. IEF 2 — 1 EENIHE, HEEE
Vil=-2{=0,
LA K
g(Vil,1) =0, g(V,l,]) = 4w,
IR PR EE o> AR BIBRGIE 2 5. o
PL Lyap P, A1 HIT5:
Ixag = (Vix)(ea,ep) (%X)

=1(x(ea,ep)) — x(Viea,ep) — x(ea, Viep)

= V] (g(VeAly eB)) - g(VVIeAls eB) - g(VVleBl, eA)

= Vl(ege,gvﬂzv) - Vlege};VHlv - eZVle};VVlH

=ehepViv,l,

= —ehef (V) (Vol,) - eiegl“lﬁRﬂwﬁ,

N
Ixa = —xacxcs — Raspa.
EREPRMHR T Vil =0. 535%RE _E R TCE 5B MG 2584, B Einstein 772,
S (E=] )
Raspa = §R446AB = Ay >S5 ap,
DL )
I(try) = —5(“)()2 — Ryy.

lh = —4mry?. (3.10)
[ B, FRATITE A = ORI 51 2283.6, T LIS 2

lh+r‘hh=-r1, (3.11)
Lh+2wh+r'hh=—-rt, (3.12)
lh-2wh= —47rr£2. (3.13)
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BN BRI 251 51 134 (NS o 7S — )

2. NHEMNHES o W7, ZIMREGRH LR (3.12) M (3.13) ME3EETT R,

P2 I8 L AR R 7 20T LA 3
Uw =111V, Vo l, = "I 171PR g0

EER V=0, .
lw = —~Rsy3.
w 1 3434

FIH Einstein /752, TATH
R§34 = R34y - R?Azx = 8771//%

i

1
1R3434 = dngy —r 2 (1 + hh).

FIH 51 #E3. 5515 21
lw=r"?(1+ hh) - 4ngy. (3.14)

- BATE a = g 0,50, s NETHEZ M P BB 28, MARNTER ¢ 5§ o MERTTE.

HRTTH 2 [ RE A a = -1s, T2
la=—(Vil")d,s — I""V Vs = [*(V,["),s,
Vil=0 LK V,V;s =1(ls) = 0. ik FxUsh 2

la = —2w. (3.15)

X BEBANHEFBTRE Agp = 0 AELLARAR FRIBIC. OF 7RI T I A LTS, JATE A

B RAERK DT M RS & T SRR E T, W

1 = g 4 (1 + ),
e EIRTTRE A E I E T, H A FOR5F Laplace-Beltrami &1, I

Ko =TIV, 5,6 = (1 +19) = 5 (V8" + Vi)V,

F—Jih, A ATE IS S Y, W

V6=V - 5 L0+ 1),
priaii} )

Ap = Mg — 5 (b xy + tr xyp).
I JE T RRER G R 2

Mg~ L (b + 0 ) = 5 (1 + 1) + w0,
HphMeama) 1 5133.6. Xl
W+ Iy + 209 +2r~' (hyy + hyp) = 0.
A 5136, ©nl LAgk— 2N
Iy +r! (h£+@//) -0, (3.16)

1+ 20y + 7" (hy + hy) = 0. (3.17)
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NIRRATE E X =AU, BPRTTIHE 301 Hawking 5 &
EX 3.1. 2L =% ®m S W&y Hawking K& H

r(S 1
(2 ) (1 + Ton /Str)(tr&dvols) .

m(S) =

FRPE CL L5 334, A1 H00E
m= %(1 +hh). (3.18)

FRABE (3.7), (3.8), (3.10) — (3.13), FA1H

Im = =2nr’hy?, (3.19)
Im = —27rr2h£2. (3.20)

B RT3\ Hawking R HIEFEL —. m AAUE R EF RO FRME, FLI S8 %k 3t
4. SR T TR b .

97 LA 2 h 3k 4 T A, JRATEAH %6 Penrose 45 Hi A7 3R TH G
B SC AR R B ARAE, AZ AR SLPR B, WA — N AT BRI ARR T [, ] AR A0 B 10 326 ik
AT BB A . AT DI, X B TH A — A R SOR MM W Ay . T
B ERRRR R, (P3RS
EN 3.2, @ S, HAEES, TTHL

try <0, try<0O0.

BT, BRATFEIFEYMESRM, KT r B BRI rlr = 0. MHEERY]
{H:
L. h Al p BWIME. FIFTTRE (3.7), 505N 1(rh) = -1, FE RN EYIE, JATH

N
h=-=,
- r

4 — 0, FER AR BT
(hﬁ)|r =1

HIEF) 2Tr|r = (h+ h)|. = 0, TAHFH

hr=1, h|.=-1 (3.21)

r

2. a MAME. BT Ts=0, #&
alr=-ls=Ils=1. (3.22)

3. w WMWME. A T R, A
0=V ((+])]=-2(-1)o.

[
w|. =0. (3.23)
4.y My BYHME. MAJTRE (3.16), S5 1(ry) = —hy, FFEARIRW_EWIME, A
W= —% /S@wds. (3.24)
- 0
F . ARG REAmESST, TYHER, T (5.8), (5.12) = (3.18) 5 H € HAHF K
Jhz
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P b 75 REFIAIE 3L R A R 7 FRAT B A B PR R T R4 M — T, Wk CAAE A H
SHHOEHE Cr(u) L8 E T v, WRIEYIMESA: (3.21) FxdARME, FATAT AR 72 (3.10) F1
(3.7) MR b A ry FUFHPIME A (3.21) A5 HE (3.11) AT LARH Ay RIFHWIME AT (3.24)
B2y Ja, MYMERIE (3.23) MIUTHE (3.14) MR w; FIAIHIME S (3.22) AITTHE (3.15) fif
oa; f&fa, J7FE (3.17) ATLAKE ¢ IOWMEHERROR. EASVE RS, JRATIX B2 12 )L
2R 7 WA IR B X IR T2 5 B, X ] DU A L5 G N HEIA Einstein scalar 31
251 Penrose K. 31X — SUBRA AL a5 THI ) 215 RS AR il Re.

3.3 Double null %5

AFTEATN 4 Double null Abx, FHZHECHY [1]. #2432 5], Double null 2445
%2 Bondi PRI —FMEIE, BEAEECF IR B INTEMT. Sk, EIXEE, FRA 1A R
IR RS u, v, 0%, 0%, 13 A R

g = —4Q%dudv + hap (46" — b*dv) (d6”® - bBdv). (3.25)

MER BT A2, u 5 v N ARFR AR KA R O . b4, ¢ £ u 5 v HIK
SPERIIAE, Bl = 4Efhii S, MTEREEN has.

NAFRN LA EARFR S AR EERR, FRATH IR AT LR Bondi ALFRISAEXS I 25 04T JUAAT_E 44
U], RSB EIAVEZ UM ES, BHE1RS H Einstein 77 R EAEA (FL Bix 2
SEOMARHERIEGE). B RRIVIAE A BA 7R R, A TATHADS “f A, B
BN PR E X4 —AMEALRRCA B Doouble null ARFRFIE.

EM EFESCENM KRR ~ x ~y, HENHER—A SO(3) KIHUE . FEHENRRT, %
JERI AR M /S, WA REEAS /U (BIEENSENR) ORI 28 M 2P i — 5k —4ERKii. 1£
A BRSO, USRI M/S BT

[ E I S ) — R p, & T ARG FRE. EXAS 2 4En 2, JATHEE p mm %200
MHBZL, KIS (incoming) MIHLZEICH C, il (outgoing) MIHZkid N C. #alic u 5
v NP RIS S8, HAE T 5 C S RiabS uw=0; KL, Wy C Wz, Cc 5T
LA v=0. & D0,v)) £ C,C 5T FrEKMXIE. Sk, RAVER] T —HALARMS,
H AR SR AR 0w R v IR, EATRAKCP R AR IR (N3 M R =
Y b T R, A R — B BRSO ). At e w v #REE Y optical
function, EATEFHIBEE MR M _ERZOLREY), XE/2E Double null £ TR

i DA ARFR IR EL, FRATH A T2

g = —Q%(u,v)dudv +r*(u,v) (d6” + sin® 6d¢?) (3.26)

HA Q5 r NRT u,v BIEREL, r 78U _EEERRERIAR.

A]LLE B, EERFRR T, IXFE R 7 U e R, 3 B FRAT T e TR 2 LA
a5, FATT CLE A LSRR 4, 5 21E X1 Einstein scalar 37712, & 6ATH
5 Christoffel £75, HAHIEFRN

0,(Q?) 0,(Q?)
_ 1’*1 — o

0
1—‘00 - ’ 11 =

02
0
FgQ = ng = Lr’

SIXHL MRS “U2” 1, BEE Rice RE: FHAER v, x, Z40KTFELRY 2 R 5, n(ER), 0, o(TIF);
LK curvature 70 &: 2-JER @, @, 1-TER B, B, LKFEL p, o. B B

S AT RE AT G ), A0AAT BE FRIE LA I AR AR X RIS 78 5 BN ? e b, X BLRLE p AINHKHK (domain of dependence)
RUFE S RTARHUE IS BT SCHSH 1 R SR G4 vl 8, B 2 o) — N, A SCHE LA E RN R TT
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o,r
2, =713 ==,
12 13 r
1
2, =—sinfcosh, I3, = )
33 S 237 on e

PR AR R RIE R, I FRFRSE I Ricei B3, FATH T LT Einstein 3% )5 12
(3.1) 5 (3.2) B5Nh:

92

ré,0,r + 0 rar——I, (3.27)
Oyr 4rr(0,0)?

o (1) e oo
o,r 4rr(0,0)?

0, (92 ) =0 (3.29)

rd,0,¢ + 0,rd, ¢ + 0,rd,¢ = 0. (3.30)

BATHA W TEZ Double null A445 ) Hawking i S FIF IR E . ik, FRATERL
€3 = 29_18,“ ey = 29_18‘,, mu

2ro,r 2rd,rsin’ 6

g(vaoe:i’ag) = Q B g(v(%ei’wa(ﬁ) = 0’ g(va¢e3’a¢) = Q

IS y i, R 5
40,r vy = 40,r
rQ’ X="a0

try =

R A T 405 3. 1R03.2, BefiToE X7
ENX 3.3. KA S(u,v) ¥4 Hawking FE m(u,v) T XA

m(u,v) = g (1 " 43ur(')vr) ‘

o2
EX 3.4. FHE (u,v) BRHL
Our(u,v) <0, d,r(u,v) <0,
2 FAVFEAR S(u, v) RHIARE S P b —RIEIE @
FIR TR (3.27), AT

8nr20,r(0,¢)?
Q2 ’

8nr20,r(0,¢)?
o =~ (3.31)

o,m = —
H T LLETTRE, BAVETEAE Double null ALAR 42 H WA
(1) &R, ﬁaﬂ]grEOEFJ:;
(2) 13— B, AT AAY B Q2 (ug,v) = 1;
(3) TSI aF pi Ak, ¥ A “Ih R0, BN E6 I 2 5 40 S S8 e I b 2. X
B 0,7 (ug, 0) = =0, 7 (ug, 0).

i DL R R AME 2544, FRATTAT LALZI I Einstein A &3 1AL,

TYNO A 2 R I B AT R R, SRR R R T 20 I (] AN .
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3.4 Einstein scalar 78IRS BRI BRI F = A9 2 AL

ARTTERATH BHT RS E H3.1, e B e BELHIE B BARIRIE 7 SAE DL L PRI AL AR T 2
FRFEN. BRT SR, FAT KR B AT 1) Double null AAEATHERH, {H[FR]Rf F0A T 242
J¢ Bondi ALFR T AHRIIZE R, 0 T3X 857 IR IE, BRI T LB AT T

F52 |, Double null AEARZ7E UAT =BT R B B 22—, 281k, £
AR SRS 43, 78 Schwarzchild % SE R ff ) 2ot F e ME R AE LR AR E M, Kerr FR M, B
TR RIEREESE, RS AR IR P, R M, AR S 5] ) Einstein-
Euler FEARVAR T BRET ST K.

e bE—/NTd s, e € ER—r g N (u,v2). AEABE S YLK p F1 g 53
AERVIME, FRATZE B2 DR R, X H A HBUE IR T, Hrh R € XCALL pg N—2%4 %,
r'5 C ii% C 152104 7 — s i sor) <5678

AL 7 () = r(u,vi), mi(u) = m(u,v;), Qi(u) = Qu,v;), ¢:(u) := ¢(u,v;). UWH]
T8 B3 1FTIR, FRATH € SO AR K U #S Hawking Jit &35 HL 7] -

5o 2 -G - 20m(u) —miu)
' r (I/l) ’ ’ rg(u) ’

00 :=0(ug), 1Mo :=n(uop).

EHS IR AR T
EIB 3.7. AR
X

E(.X') = m [5 — X — ln(2x)] .

FJEAAE B AT R AR — A& Sy B Soo, 4 ri(ue) B ra(ug) REECAGF1Z.
W2t T4 E8G Einstein scalar & %, & #1148 i# &

no > E(do),

W B u,, EFAAFRBFS T KB [ug, u,] X [vi,ve], BeBE u* 3569 & SH 36 442 T

IE M e R 69K R, ARS8 YA S, o A BB M R A A sk KR, BAZ TAER G R B
A58 R BB bR GRS, RMBGE O,r M O,r H BAH —AN R Fr b, Al

AT LAWE, XA AT REN G

3138 3.8. & D(0,v1) & [ug,0] X [vy,+00) BIFTAZE, A

2
or < —— .
r 5 <0

A S, 7E Bondi 286 N h < —1.
31583, 8H0IERR. TATRIFI TR (3.27), ZIEIREIZE C b, 0l
8, (rur) = —}1,

TRMEMN 0 2 v AR 553

ro,r = _ZKL'
TESE AP A E v = 0, FERI IR 244, v L
0,r(ug,0) = %, 0,1 (ug,0) = —%.

EREBTRE (3.29) HUFEAT 6,0,r (up,v) <0, T7&

- v, 1
8V(r—v8vr):—v8vavr20:&(;):r r‘; r20$22m=2,
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XA 0, (uo,v) < —1/2.
XM, IATAMA J7 R (3.28), SR A4S 2

o,r

o,r 1
o (u,v) < E(uo,v) < —5

H SAE R, AT oor > 0, XN T 2m < r.
HA] DA A 15 2]
5|32 3.9. AR FIEISHERA, AMEH dm >0, #Hm m>0.

PAE AN 5 B AR 2 5 AT A T ke 21 5 2R

EHE3.7THERR. ARG AT ENSE
— ro(u)
) 7”2(“0),

R MR x R EL, 8 ' (x). [F B
dy _ dy (dr)”
de  du (du)

— 1 (au(m2 _ml) _ 77)

X Outa
PN AT AR (3.31), A2

dp _ n N 167 (ri0yr1(0up1)®  r30vra(dug2)®
dx = x  x0,rs Q2 Q2 :
AL, e AT, S IR AT E A T H As. vk, FATIE
SIFE 3.10. K EB D(0,v1) UR ¥ RAFHRE, WHALFT u € [ug,0], KMA
9528‘,}’2
<e
9128‘,}’1
BUE S HE, 7E Bondi 445 T hohy! < e7.

S5I13E3.1089IERR. VERE

(3.32)

-

In (Q3%6,r2) — In (Q7%8,r1) = / 8, In (Q728,r) dv

V2 2
=—/ de (H13(3.29)

v 99, s
:/ ZOM gy (H1 Hawking 5 ff5E X 2 543.31)

2m —r

<- / " 200m o CEEL

r

Amomy) (31 53.9)

ra
PR I BRI LR AR S5 18 o
RAE 51 FE3.10, A4k EA45 115

@ _ _Q + 167 r%ﬁvrl(augbl)Q _ r%@vr2(6u¢2)2
dx  x  x,r Q7 Q2
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_28
+x.Q.2aur2 ( 1( u¢1) 3 _’"2 (0.92) )

2 (12 (9 26,,_r2(a #2)?).

AT AL
@HE 3.11. ‘U";[i—iékh D(O,Vl) UR ‘:P «5’:75_1'%3;2@ e O = r26u¢2 —r18u¢1, B\]'J Yu € [MQ,O], é'}(‘

K
Q20, 1 1
@ < 22y [=- =
871'(9‘,7'2 1) ri

S i, 4 Bondi 4445 R, © < I,/ (2ha) (ma —my) (ry" = ri1).
SIFE3.11893ERR. FATHITHE (3.30),

Vo 2

0 = ( / av(ram)dv)
vlv2 ,
= (/ 8ur0v¢dv)

V2 8 28 6 2 V2 anu 3
< / ﬂ—<¢> v / - 8m;dv (B % 51 383.8)
QZE)L,r
= (m2 - ml)/ 87rr2

AL ETAR 2y EER R E T Q2 T, IWIH 72 (3.29) #4. W
/v2 Q29, i gy = /V2 —0,ro,r Q>
" r2 B " r2  Or Y
93 V2 —0,1r0,F
< d
- avrQ -/v; r? '
Qora (1 1
<—F0|——— s
T O ra n
H e — AESHBT NHrIES. O

S 3.12. ZE3HR D(0,v) UR FRAFHRA, M 6,0,r <0 FAETE (u,v) € R M.
W= B9IERR. 1 Bh Hawking g€ X, BAINS HFE (3.27) N

2
ro,0,r = _m2§r2 .
1 51 FE3.9R175. q
R4S #3.11, FAiCA
T g () e -1 )
= —g - ig’égz (@2 +20r19,¢1 + (1 — €27) r2 (au¢1)2)
< —g - igégzz (1 + enl_ 1) e’ (HH Cauchy £%3X)

=

2 1 1 1
S————(mg—ml) ——— 1+
X ro ry em—1
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<1 + @ 1+ 1

- e —1)"

Hrb >0, MATHN S, BRATEIE 0,r(u) < 0yr(up), FEM ro(u) —ri(u) < ro(ug) —ri(ug). it
o MUt

O () B () T ()
ri(u) ro(u) = (ro(u) —ri(u))
ra(ug) — r1(up) So

= ra(u) = (ra(uo) = r1(uo)) — x(u)(1+60) =6

FIF e7 -1 > 5, AVEF

6o
— <=+ |l+=| —.
dx x x( n)x(l+6o)—6o

KR AT, P, Gronwall ANSEFEH 72, T EATG 3]

<n(x) v + % (ln +0 ;_1
Mo =) A 69) =60 T (1+60)2 \ \x(1+60) =60/ "\ X(1+00) -0 '

FATHL u, € [uo,0], 1613 x(u.) = 360/ (1 + 6o), WLl Ex0AumEUR/IME. HIERN
3, IR n(x) < 1 BRI, FA TS 21

)
Mo < E(8¢) = m (5~ 6o — In(260)) »

TRIENTHE D] T EERLE. a]

i3%: ERSIFRETESH) Penrose

VERME %, T 1A BAEALE) SURXT IS 5T HR R B R REE I Penrose K.

WNH:4, Penrose K72 H3E ZYIFR24 5K Penrose B[, Aih F LT ML) 7%, m] LUK R
A TR K DY 4 2 R A PR IX A . BT Penrose B3R EUUIE M, 70l & FE BN FR
BB ™ AT AR R 4 3 4k, MERE AU 2 E . 2800k 3, H Penrose W] LA43 ] i 1
FRREIN S B AEHH, HAH S ER S BRI R, R BIE sh k5 a5 s 5.

—iK Penrose FIREEELLRJUMILTS: KB m, o BAARRER LT &, KM
ARKRIOET T, WS UL FHAF (event horizon), RMAF (apparent
horizon)®. JHpr, X F-—N IR, ST T AT DAfE) B LR Dy SRR 5 A SR Oy AL AP TR T RE
T BN PR (H AR TC R M R IR ) e — gk 4SO i I TR AR (R
AR (RPAF SR AT BETE R X 8k) FRpa 5, /i s #E3. 7 3R B S, o SEBRELAL T WA 7
k.

FATLL Schwarzchild B2 iR Penrose K. Schwarzchild B 2= B B - B #r i
A (5MTE ¢ Jok) KHEZ Einstein /7R KIFRE Schwarzehild f#, W (1.2). THEEE—EA
‘B Penrose &:

Ol SRR AT UL A1 SR R R X SR L 5
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Kl 1: Schwarzchild B} Z% ] Penrose &

EE—F, ERPIAANN T Schwarzchild B2 AYES &5, P& r = 2GM Nl
T P=W iy o R L IB N s A b TS B B va k> ST ESB =) TN R 5 S R i s B G B < |
W 5 e ARRR T IR, (ER SR AR R R R A B O, RE e AR P R )
B A E

55 T 25 375 B ONAH G /& Einstein scalar 360 B 25 10 25 ] (&t — N IIEAR 5
RI°H Penrose ), IXt/& Christodoulou 7E [4] FH i B R AR L EE: 5| R E:

& 2: Einstein scalar 37 I 25 ] Penrose &

R Pt 3 RS T AT A B B (AR I A R LR, BATTRT LA T B
T AR X3S, i, A2 i Frh T, NI Cg 3AT75 8 BB L R H S5 I b 6 HE,
HEM S10 5 So,0 AR HTKERT; FATREZLREKE T S,,, XK CF L1
KRR, Bl 5T RA5 8 2RI IRI s AVEH R 1R, IX S 3R Xk ) i F 2
A, RV R 2 AR AT TR L) M Ros B SR, e TRIMERRR, ¢ i
%.

B2 3 HR

[1] Xinliang An and Zhan Feng Lim. Trapped surface formation for spherically symmetric Einstein—
Maxwell-charged scalar field system with double null foliation. In Annales Henri Poincaré, pages
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An Introduction to
Hilbert’s 19th Problem

Li Xuanyu

Abstract

We discuss the existence and regularity of the minimizer of a kind of variational
problem. The latter part of the paper concerning so called Hilbert’s 23 problems.
The basic knowledge of functional analysis, function spaces and elliptic PDEs are
included. To prove the smoothness, we give the Schauder’s estimate and De Giorgi’s

iteration.

Preface

In this paper, we would like to give a brief introduction to Hilbert’s 19" problem. In
this problem, Hilbert questioned that whether all of the local minimizer of so called Regular
Variational Problem is smooth. It has been solved in 1950s, 50 years after Hilbert raised it.
Though has been solved for tens of years, we think it would be meaningful and illuminating

to learn about how predecessors dealt with the big problems one hundred years ago.

Hilbert’s problems is not as distant as it seem to be from us. In fact, the results shown
in this paper is now the fundamental theories of elliptic equations. Hence this paper is
written for those who are interested in the theory of PDEs and Geometry. Also, we assume
that the reader only have the knowledge of mathematical analysis and linear algebra for
freshmen. Therefore, all of basic knowledge is included. However, the details of proof are
too much to be included in a paper no more than 20 pages. There we only give basic ideas

of proof. For more details, reader can turn to reference books.

Preliminaries

In this section we list some basic results from Functional Analysis and PDEs, which will
be used later in the paper. And in the last part in this section, we will give the definition
of regular variational problem.

1.1 Preliminaries of Functional Analysis

Notation: in the following, we denote inner products by (:,-), norms in general space
by || - ||, and the standard norm in R" by |- |. We always assume a vector space is over the
field R.

As learned in Linear Algebra, a vector space is a set that admits a linear structure.
Functional analysis studies vector spaces that are infinite-dimensional. In this situation,

algebraic structure is not enough and analytic(or topological) structure is needed.

EHEER: 5, 2019 FHCEEREERE, MIFH: lixuanyuOmail.ustc.edu.cn.
FafHER: 2 A 11 HRRE, 4 B 17 A% — B, 5 B 2 HE%. Fiftgf: £1.
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We would talk about the vector spaces with inner products or norms. As learned in
mathematical analysis, an inner product induces a norm, hence both of them induce a
metric on a vector space. This allows us to talk about the completeness and continuity. We

introduce the following terminology.

Definition 1.1. We say a normed space is a Banach space if the induced metric is
complete; We say a inner product space is Hilbert space if it is a Banach space with

respect to the induced norm.

The example of above spaces would be given in the second part this section.

Definition 1.2. Suppose (X, || - ||lx), (Y, |- |ly) are two normed vector space, we call a linear

map T : X — Y a linear operator and its operator norm is defined as

ITx|ly
= sup [|Tx|ly

T = =
xeXx\{0} [l || x lIx|lx=1

We say T is bounded if ||T|| < co.

The space of all bounded linear operator from X to Y is denoted by L(X,Y), then
(LX,Y), - 1) is a normed vector space. In particular, if Y = R, we denote L(X,Y) by X*
and call it the dual space of X.

The following property is basic.

Proposition 1.3. A linear operator T between normed spaces X and Y is continuous if and

only if it is bounded.

Proof. If T is bounded, from ||Tx|ly < ||T||||x|lx we know T is Lipschitz-continuous. If T
is unbounded, then by definition there is a sequence {x,} C X that converges to 0 but

[ITx|ly = 1. Hence T discontinuous at 0. O

Next we mainly discuss Hilbert spaces. First we list two well-known results below.

Their proof can be found in [1].
Theorem 1.4. Suppose H is a Hilbert space, then A : H — H*,x — A, = (-, x) is an

isometric isomorphism. That is, A is bijective and preserves the norm.

In the rest of this part we discuss the convergence in infinite-dimensional spaces. We
know that in R" a set is compact if and only if it is closed and bounded. However, this not

hold in general case.

Proposition 1.5. Suppose X is a normed vector space. Then the closed unit ball B := {x €

X i ||x|| € 1} is compact if and only if dim X < oo.

Proposition 1.5 shows that the convergence generated by norm is too strong to find
converge sequences. Since compactness is important for application, we need a weaker

conception of convergence.

Definition 1.6. Suppose H is an inner product vector space, {x,} C H. If for some x € H,
lim{x,,y) = {(x,y),Vy € H,
we say {x,} converges weakly to x and x is the weak limit of {x,}, denote by x, — x.

By Cauchy inequality and positive definiteness of inner product, the following is obvious
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Proposition 1.7. (1) Convergence in norm induces weak convergence; (2) Weak limit is

unique if exist.

Now we can state our main theorem in this section, which would be used later.

Theorem 1.8. Suppose H is a Separable Hilbert space, i.e. H has a countable dense subset

S. Then any bounded sequence {x,} C H admits a weak convergence subsequence.

Proof. Using diagonal trick and boundedness we can choose a subsequence such that
lim, e {xg,,y) exists for all y € S. By the denseness of S we know every (x;,y) is a
Cauchy sequence, hence the limit exists. Now lim, ,«(xx,,y) is a bounded functional on

H, by Riesz representation theorem, there exists x € H, such that x is the weak limit of

{xk, }- O

At the end of this section we characterize the closedness under weak convergence.

Proposition 1.9. Suppose H is a Hilbert space, A is a closed convex subset of H. Then A
is weakly closed. That is, if {x,} C A and x,, — x, then x € A.

Proof. Assume x ¢ A, then d = dist(x,A) = infyca ||y — x|| > 0. Take y, € A such that

d, = |lyn — x|| = d, then using convexity, a calculation shows

yity;
2

Hence y, — y for some y € A. Moreover, since A is convex, Yz € A,t € [0, 1], we have

2
Iyi = vl = 2043 + d2) - 4} - <2(d+d) -4 50, ij o .

Iy = x> < 1L =)y + 1z = x[* = ly = xlI* + 2¢y = x, 2 = y) + ° [l = y[|*.

Now divided by ¢ and let t — 0 we have (y —x,z—y) = 0. Take z = y,,z0 = (y +x)/2, we
have

1 1 1
(@0=x20=y) = =7lly=xlI <0 and (2o —=xn,20 = y) = 7lly =xl* + 5 =0, x =) > 0.
Then let n — oo, we get a contradiction. Hence x € A. O

Remark. In fact, substitute inner product in the space with all bounded functionals, we can
define weak convergence for arbitrary normed vector spaces. Then Theorem 1.5 holds for
all reflexive Banach spaces, which is Eberlein-Smulyan theorem, see [1, Section 3.4] or any
other functional analysis text book. And proposition 1.6 holds for all closed convex sets in

normed spaces.
1.2 Preliminaries of PDE

Notation: suppose u is a function, then Du means the gradient of u, D;u := %, Djju =
d2u
Ox;0x;’

lyl = Z?:l vi and

and D?u denote the Hessian of u. For multi-index ¥ = (y1,%2,...,¥.) € N, let

oy
OxY1 o Ox
In this section and below, n always denotes the dimension of the spcae, U an open set in R"

Dy =

and Q a bounded open set in R". For simplicity, we always assume n > 3.
In this section we list some basic knowledge of function spaces. For more details, see
(2, 3, 4].

We begin with a characterization of continuity.
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Definition 1.10. Suppose u : U — R is a function.

(1) If for some C > 0,0 < @ < 1, |u(x) —u(y)| < Clx —y|*, we say u is Holder continuous
with exponent «.

(2) Ck2(U) denotes all the function u € CX(U) such that all of its k' derivative is Holder
continuous with exponent a. If k = 0, we simply write C*(U) := C**(U). Holder semi-

norms are

|u(x) —u(y)|
[u]cawy == sup W [u] e = Z sup |D”ul, [u] creg) = Z [D”u] caw)-
Hyey Y vk U Y=k

The norm of C*®(U) is defined as

k

D”u(x) — D”u
lllera) = Y [ulera) + [l cray = )| max [D7ul + > sup | (| )_ > Wl
g IyT<k IyTek )€U Y

Sometimes we simply write [-]ca(g) = [-]ce ), s0 as other norms and semi-norms. It is
not difficult to check

Proposition 1.11. (Ck*(U), || - o)) is a Banach space. Moreover, we have the inter-
polation inequalities: for u € C*%(Q),& > 0, there exists C, depends on n, k,l,a,Q, &, such
that

[ulcrgy < [ulcre@) + CellullLe), 1 <1< k. (I)

Proof. || - ||cr.a) is a complete norm is obvious. For interpolation inequality, we prove
by contradiction. Suppose there exists uy c C*%(Q),e9 > 0 such that lunllcr@) = 1
and [un]ci@g) > eolun]cre@) + Nllunll=). Now, [un]cra@ < 1/€0, by Arzela-Ascoli
theorem, turn to subsequence we may assume uy converges to some u in C*(Q). However,

luw =) < 1/N makes u = 0, which contradicts [luy||cxg) = 1. O

These interpolation inequalities are very useful. They tell us to estimate C*¢ norm,
we only need to estimate C*% semi-norm and L*. Here are some useful criterion for Holder

continuity. First we characterize Holder continuous by modifier.

Proposition 1.12. Suppose p is a modifier onR" andu € C*(R"). Let p.(x) =e™"p(x/e),us =

u+*ps. Then we have the equivalence of semi-norms:
—[ulce@n < sup &7 Duy(x)| < Clu]cagn,
C £>0,xeR"

where C = C(n,a, p) > 1.

Proof. For the inequality on the right side, we have

&' Du.(x)| =&

/ Dp(y) (u(x - £y) - u(x))dy

<o [ Dot - o) - u(wlay

< [uleon, / Dpl,

where we used the the fact that p has compact support. And for the inequality on the left

side, first we have

|u(x) —u()| < fue(x) —w(X)[+ |ur (x) —ur (V)] + Jur (y) —u(y)l.
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Similarly,

| (x) —u(x)] < /p(y)(u(x—fy)—u(X))dy <T”[u]ca<w>/|p|.

Also we have |u.(x) — u-(y)| < supg. |Du.||x — y|. Hence
lu(x) —u(y)| < Ct%[u]co@n) + Sup |Du||x - yl.

Set 7 = ¢|x — y|,& > 0 to be determined. Then

u(x) —u
M < Ceu]cemwm +e 1 sup |Du,| < Ce[u]cemn) +&1 sup  |Du.(x)].
|)C - y|" R» 7>0,xeR"
Take € such that Ce® = 1/2, we get the desired inequality. O

Proposition 1.13. Suppose k e NU{0},0 <a <1 and u € L*(By). If for some M > 0,

u(-+h)—u

ul|p <M,
el "

< M,Vh € B;.
cra(Biou)

Then u € Ck+1’”(B_1) and
lullcrore @y < Cln k@) M.

Proof. It suffices to prove the case k = 0, the general case can be easily derived from this

special case.

First, the condition that |u(x + k) — u(x)| < M|h| means that u is Lipschitz continuous,
hence differentiable almost everywhere. Once we can show that its derivatives are Holder
continuous, the u will be automatically continuously differentiable(we can show its mod-
ification will uniformly convergence itself). By assumption v = (u(- + h) — u)/|h| satisfies

[v(x) = v(3)] < ¥ = ¥1%x,y € By_jsy Take y = x — h, then
lu(x + h) +u(x — h) = 2u(x)| < M|h|"**,Vx € By_ou, h € By.

Let w(h) = (u(x + h) —u(x))/|hl|, then

u(x+h)+u(x) —2u(x+h/2)
|h]

Thus for k € N, |w(h/2%) —w(h/2"1)| < C(@)M|h|*27%*. Sum up,

lw(h) —w(h/2)| = < C(a)M|h|°.

|u(x+h)—u(x)—(h, Du(x))| = |h| |w(h) — 11—{% w(th)| < i lw(h/25)=w(h/25)| < C(a) M|k
k=0

Now let y = x + h,r = |y — x|, choose z such that r/2 < |z — y|,|z — x| < r, then
u(y) —u(x) = (Du(x),y = x) + O(r**?),

u(z) = u(x) + (Du(x),z = x) + O(r'**) = u(y) + (Du(y),z = y) + O(r'**).

Take z such that z —y is parallel to Du(y) — Du(x), then we get Du(y) — Du(x) = O(r®). O

Proposition 1.13 describes how derivatives can be approximated by difference quotient.

Same as convergence, the derivatives defined by limit is sometimes too strong to exist.
It would be hard to directly show the existence of solution to PDEs with those strong
derivatives. Therefore, we need a weaker conception of derivative. The space L, (U)

denotes all functions that is integrable on compact subsets of U.
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Definition 1.14. Suppose u € L} (U). If for some v € L (U) and multi-index vy,

loc loc
/umq) = (—1)'7/v¢,\7’¢ e C>(U)
U U

We say v is the y*® weak derivative of u, also denotes by v = D”u.

The weak derivatives is defined by integral, hence we can only distinguish them in the
sense of a.e. equality. In this article, if two functions agree a.e., we will regard them as a

function. By the property of integral and integrating by parts, we have

Proposition 1.15. (1) Strong derivatives are weak derivatives; (2) Weak derivatives is

unique if exist.

Though looks a bit complex, weak derivatives have most of properties usual derivatives
have. For example, DYDY = D*¥ for two multi-index y and ¢ and hence commutative.
Also, linearity and Leibniz’s law hold. We consider the following special Sobolev space.
Definition 1.16. Suppose 1 < p < o and k is a non-negative integer.

(1) The Sobolev space H*(U) denotes the space of all locally integrable functions u such
that D”u exists in the weak sense and is square integrable on U for all |y| < k.
(2) The inner product of H*(U) is

(U, Ve = Z /DyuDyv, u,v er(U).

lyl<k YU

(3) H5(U) denotes all functions u € H*(U) such that DYu vanishes on the dU for all |y| < k.

The basic property of Sobolev spaces is
Theorem 1.17. For each k € N,H*(U) is a separable Hilbert space.

Proof. By Minkowski’s inequality, (-, )y« ) is an inner product. A direct calculation shows
the completeness. Using polishing, we have C*(U) N H*(U) is dense in H*(U). Hence
polynomials is dense in H*(U), which makes H*(U) separable. i

How to study PDEs? A fundamental way is to estimate the above norms. For example,
in section 3,4 we will estimate the Holder norms to show a function is the class C*. To
establish those estimates, we need various inequalities, there we list some of them which

will be used soon. Their proofs are too long to be listed here, for details, see [2, Chapter 5].

Theorem 1.18 (Sobolev’s inequality). Suppose u € Hé (Q), let 2F = n%, then there exists
C=C(nQ) >0, such that
llull 2 @) < CllDullL2(q). (S)

Theorem 1.19 (Poincare’s inequality). Suppose u € H*(Q). Let (u)q := ﬁfgu be the
average of u in Q, then there exists C = C(n,Q) > 0, such that

lu = (Wellrz@) < CllDullr2(q)- (P)

Theorem 1.20. Suppose u € H'(Q), then for each Q' cc Q and |h| small,

u(-+h)—u
|7]

< |[Dullr2(q)
L2(@)
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Theorem 1.21 (Rellich-Kondrachov compactness theorem). Any bounded sequence in H*(Q)

has a subsequence that converges in L?(Q).

As an application of theorem 1.21, we prove a Sobolev type inequality, which will be

used later.

Proposition 1.22. For any & > 0 there exists C, = C.(n) > 0, such that if u € H*(B;) with

{u = 0}| > &|Bi1], then
/ u? <C8/ [Dul?.
B B

Proof. We prove by contradiction. Suppose there exists {uz} ¢ H'(B;),&o > 0 such that
[{ur = 0} > &|B;1| and /31 uy =1 but /Bl |Du|?> — 0. Then using the proposition 1.9 and
theorem 1.14, turn to subsequence we may assume u; — u € H*(B;) strongly in L?(B;) and
weakly in H'(B;). Then /B1 u? =1 and

/ u? +|Dul? = lim / uuy + {Du, Duy)
B, k— o0 B,

< lim (/ u2) (/ ui) + lim (/ |Du|2) (/ |Duk|2)
k—o0 B, B k—o0 B, B,

Hence f31 |Du|*> = 0,Du = 0. Then by Poincare’s inequality (P), u = (u)p, is a non-zero

Nl
I~

constant. However,

0= lim lug —ul® > liminf/ lug — ul® > |ul? irklf [{ur =0} > 0.
{ur=0}

k—o0 B, k—o0

A contradiction. O

1.3 Regular Variational Problem and Hilbert’s 19** Problem
Before talking about what is regular variantional problem, we need a definition.

Definition 1.23. (1) Suppose A : U — R™" is a matriz-value function. We say A is
uniformly elliptic if there exists A > A > 0 such that AI < A(x) < Al for all x € R". That

is, A is symmetry every where and
A€ < (AW)E,€) < AJEI%,Vx, € € R”,
where we regard & as a column vector.
(2) We say a function L € C®(R") is uniformly convex if D*L is uniformly elliptic.

We will talk about the energy functional

E(w) = ‘/QL(DW),W e HY(Q).

Definition 1.24. We say u € H'(Q) is a local minimizer of & if for any ¢ € CZ(Q) there
holds
Ew) <Ew+y).

Remark. H'(Q) is the largest place makes & meaningful. In fact, uniformly convexity
means that L is approximately |x|?>. Hence to ensure E(w) < co we need at least Dw exists
in the weak sense and belongs to L?. Then do some cut-off and by Sobolev inequality, we
know also w € L?, that is w € H*(Q).
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Hilbert called the minimizers of & regular variational problem. What can we say
about it?

Example. If L(x) = |x|?, then & is the energy of electronic field and the minimizer of &

solves Laplacian equation.

Problem. (1) Given the boundary condition, is the global minimizer of & exist and unique?

(2) Is any of local minimizer of & smooth?

We will give positive answers to the above problems.
Existence and Uniqueness of Solution

Using the theorems listed above, we prove

Theorem 2.1. Given any function g : 0Q — R that can be extended to a H' function on
Q. Let
A= {w e HY(Q) : wlgzg}.

Then there exists a unique function u € A, such that
E(u) = min E(w).
weA

Proof. We divide the proof into 2 parts.
e Uniqueness. If u # w € A are two global minimizer of &, then set {u # w} has positive

measure. The uniform convexity of L implies strict convexity. Hence

8(u+W) - E(u)+E(w) &) = E(w).

2 2

A contradiction of the minimizing property of u and w.

o FExistence. Since L is convex, it has a unique minimum and xo € R” is such a point. By
uniform convexity we have xq is also the minimizer of L(x) — ’§1|x — xo|?. Similarly we
get

A A
§|X—)€0|2 < L(x) — L(xo) < §|x - xol”.

Without loss of generality we assume xg = 0 and L(0) = 0. Now L(x) < %|x|2 hence
as argued before & is well-defined on A. Let &) = min, 4 E(w) > 0 and {u;} C A
such that E(ux) — Eg. Using Sobolev inequality {u;} is bounded in H*(Q). Then by
theorem1.8, proposition1.9, turn to subsequence we may assume u; — u € A. To show
u is a global minimizer of &, we prove the following

Claim. Suppose wi,w € H'(Q) such that wy — w, then &(w) < liminfi_o E(wy).

To prove the claim, for t € R, let A(t) = {v € H(Q) : &(v) < t}, then by convexity of L,
A(t) is also convex. Using Fatou’s lemma, A(¢) is closed in H'(Q). By proposition 1.9
again A(r) is weakly closed for all . Now let t* = lim inf;_,., &(wy). Ye > 0, there exists
a subsequence {wy,} such that w,, — w and &(wy,) < t* +&. Since {wy,} € A(t" + &),

so does w. Let € — 0 we have proven the claim.

Next we derive the condition that minimizers of & satisfy.
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Proposition 2.2. Supposeu € H'(Q) is a local minimizer of &, then u solves div(DL(Du)) =

0 in the weak sense. That is
/(DL(Du), Dg) =0, VYe¢e H\Q). (*)
Q

Proof. By definition, for all ¢ € CZ(Q), E(u + e¢) attains its minimum at € = 0. Hence
ﬁB(u +&Q)| gm0 = /Q<DL(DM),DQO> = 0. By a standard approximation, we know (*) holds
for all ¢ € Hyj(Q). m]

Remark. (*) is called the Euler-Lagrangian equation of &. It plays an important role

in the proof of smoothness.

Smoothness of Solution, Part I: Schauder’s Estimate

3.1 Hilbert’s 19" Problem

Eine der begriffiich merkwiirdigsten Thatsachen in den Elementen der Theorie der
analytischen Funktionen erblicke ich darin, daf$ es Partielle Differentialgleichungen giebt,
deren Integrale samtlich notwendig analytische Funktionen der unabhdngigen Variabeln sind,
die also, kurz gesagt, nur analytischer Lésungen fihig sind.

—David Hilbert (1900)
David Hilbert(1862-1943), one of the greatest mathematicians in twentieth century, raised
his famous 23 problems in International Congress of Mathematicians, Paris, 1900. These
problems had significant influence on the development of math in twentieth century. One

of them is

Hilbert’s XIXth problem: suppose L is uniform convex and smooth. Is true that

any local minimizer of energy functional

E(w) = /QL(DW)

is smooth?

After Hilbert raised this question, many mathematicians devoted themselves in it and
made a lot of progress. We only need to show the smoothness of solutions of (*). It was
first proved that under some differentiabilities, the solution is smooth. For example, Sergei
Bernstein proved that any C® solution of 2 variables is smooth [6]. Over the years, the
requirements of differentiability needed to prove the smoothness were reduced. Finally, as a
corollary of Schauder’s famous estimates which published in 1934 and 1937 [7][8], we have

Theorem 3.1. Suppose u € C+%(Q) is a local minimizer of &, then u € C*(Q).

Remark. The initial form of Hilbert’s 19'" consider the energy functional of the type
E(w) = fQL(Dw,w,x), where L : R" X R X R" is analytic and uniform convex. It turns out
that u is also analytic. Here for simplicity we only deal with /QL(DW).

3.2 Schauder’s Estimate

The key of the proof of theorem 3.1 is how to improve the differentiability. Informally
u satisfies the equation div(DL(Du)) = 0. This is a non-linear PDE and hence is difficult to
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deal with. We translate it into a linear PDE: differentiate with regard to the i*® variable,
we get

div(D*L(Du)D(D;u)) =0
Let v = D;u and A(x) = D2L(Du(x)), then we have div(ADv) = 0, a uniform elliptic PDE
in the divergence form. This inspires us to study following equations.

Theorem 3.2 (Shauder’s estimatem, non-divergence form). Suppose 0 < @ < 1, a;;, f €
C*(Q),1<i,j <nandA = (a;;) is uniform elliptic, i.e. 0 < A < A(x) < Al everywhere. If
u € C*>%(Q) is a bounded solution of

tr(A(x)D%u(x)) = an a;j(x)D;ju(x) = f(x) in Q.

ij=1

Then for each Q' cc Q, there holds

lullcze@) < C (n, 4, A, @, ||a;jllcaa), dist(Q', 0Q)) (lull=@) + | fllca@))-

There are several different proofs of theorem 3.2. We will use the method of freezing
coefficient which was introduced by Trudinger. This method is to compare the solution of
above PDE and the function of PDE with constant coefficient. To do this we need some

basic knowledge of constant coefficient PDE.

Lemma 3.3. Suppose u, f € C*(R") satisfies Au = f in R". Then for each R > 0, we have

|Diu(x)| < —oscu+Rsup|f|1 i <n,
Br(x) Br(x)

where oscyu = supy u — infy u denotes the oscillation of u in U.

Proof. This is basic for Laplacian. Integrate by parts, we get

0
+— (rl‘"/ D; udS) = 27! "/ ADu = +r'™" fvidS < n|By| sup |f],
0 8B, (x) B, 4B,

r Br(x)

where v; denotes the i*" coordinate of outward pointing unit normal vector of dBg(x).

Integrate over (0, r],

+ (rl_"/ D;udS — n|B|D; u(x)) n|B1|r sup |f].
IB, (x)

Br(x)
-n

Multiplying by r!™" and again integrate over [0,R],
|Bl|Rn+1 SUPpg (x) |f|7 hence
/ Dil/t
Br(x)

‘/1'3 (x ) |B1|RnD M(X)

|Diu(x)| < R sup [f[+ 7=

Br(x) | Bg|
<R sup |f|+— / (u—- u(x))v,-dS‘
Br(x) |BR| OBR(x)

< R su +—oscu
BR(E) 71 R Br(x)

Lemma 3.4. Suppose f € C*(R") and A = (a;j)nxn 5 a constant matriz with 0 < AI < A <
Al. Ifu € C2*(R") satisfies Y.} ;_y a;;Diju = f, then

[u]c2amny < C(n,a, 4, N)[ flce@mn.
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Proof. Since the equation is tr(AD?u) = tr(\/ZD2M\/ZT) = f, by a linear transformation
we may assume A = [. This only change [D?*u]camn) by a constant depend on A, A. Now
Au = f, fix Br(xo) C R", let g = f — f(x0), then Au— f(xo) = g in Br(xo) and supg,,,) lg| <
R[flcan).

We want to apply lemma 3.3. To do this, choose a modifier p, set p.(x) = e p(x/e), u, =
U*pPe,8e =g * pe. Then we have Au, — f(xo) = g- and u, € CX(R"). Moreover, for each
1<i,j <nwehave AD;;u = D;;g.. Applying lemma 3.3, we get

n
|Dijrus(x0)| < R osc Djjus+R sup |D;;g.|
Br(xo) Br(xo)

n
S . [Dijuclce(Br(x)) + R sup |Dijgel, 1<k <n.
R Bgr(x0)

Recall that

o
/Dijp(Ty)g(y)dy < C(n)e™ sup [gl.

B (x)

g =" [ (= D)e()an Diyg. (0] =&

Hence

sup |Dyg.l < Ce™ sup gl < Ce > (R+8)"[flcn. e < R.

Br(xo) BRr+e(X0)

Write R = Ne, N > 1 to be determined. We get

& R(R+¢&)“

l-a
81—(Y|D,’jk1/l5()€0)| < C ((E) [Diju]C"(R") + T[f]ca(Rn))

= C‘(]Va/_1 [D[ju]ca(Rn) + N(N + 1)0 [f]ca(Rn)).
Apply proposition 1.12 to D;;u, we have

[Diju]C‘Y(R") < C sup Tl_a|DDijMT(Z)| < C(N"_I[Diju]ca(Rn) +N(N+ 1)a[f]C(l(Rn)).

7>0,z€R”

Choose N such that CNe~! = %, then the desired estimate follows. O
With these preparations, we now begin to prove theorem 3.2.

Proof of theorem 3.2. First there exists Ry > 0 such that if R < Ry and suppu C Br(xg) C Q,
then

4] oe () <€ ([f]c“(BR(xw) Hell () |

In fact, freezing coefficient, write the equation as X _; aij(xo)Diju = f — X7, (aij -

a;j(xo))D;ju. It is easy to check [uv]ce < |lull=[v]ce + [u]ce|v]e < |lullcellV]ce, zero

extend u to R" and apply lemma 3.4,

[M]CM(BR(xO)) <[f- Z (a;; - aij(xo))Dij”]Ca(BR(xO))

i,j=1

< ([ () + B e+ Ml ) )

Take Ry such that CR§ < %,Ro < 1and Ry < %dist(Q’, 0Q), we get what we want. Next we
remove the condition of compactly supported. For this, for each 0 < R < Ry and xy € &/,
take a cutoff function ¢ € CZ(Bg(x0)).
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Let v = Mg, then Z:‘l,jzl al-le-jv = f§+l/t Z?,j:l aijDij§+Zﬁj:1 a,»jD,-uDJ[. To apply what

we have proved, we estimate the C* semi-norm of the right-hand side. We have

lZn: a;iDjuD ;{

ij=1

< D a0l cu gy ) ([“]Cl(BRuw) v (mun)

co(Br(xo) 71

+ [u]cl,a (BR(XO)) [g]cl (BR(XO)))‘

Choose ¢ such that {|p, (x) = 1,0 < £ < 1 and [{]crBrxo)) < C(R =175 [{]craBring) <
C(R-r)""™) k =1,2. Using interpolation inequality I, choose € as e(R—r)**,1 =1,2,k = 2,

we get

n [u]. (s R [u]
1 (Br(x0)) € (Br(x0))
[.glaijDiuDj{ ( ( )) <C (R_r)1+a + R-—r
L= Ce|\Bgr(xo
el
= (Br(x0))
<C S[M]sz"(BR(Xo)) + Cg (R — 7')1_“2 '
Similarly,
[f1, (s n
® R(Xo))
() < | Ven (o) * —R=ye [Z’”
. )
S S[M]C('(Bk(xo)) TRz |

Note that u = v in B, (xq), apply what we proved, we have

s s0) < e (muis)

I e (o) 10 e (i )

<C|lf] (b)) T T (R—p)e | (R—r)2re

+ elu]

co(Bry(x0))

This inequality is close to the result. To remove the C*? semi-norm in the right side, choose

€ such that Ce = %, then apply following lemma to ¢(f) = [u]c2.e(8,(x)), We get

11 (g ) * ]
(B, (XO)) Lm(BRO(XO))
e (5,000) < C\ W o (0, 00) + (R —p)*e

Then take R = Ry, p = Ro/2, using interpolation inequality again, we have [Ju]| ., o« (Brgya(x0)) <
T\ PRg/2 (X0
C (Ifllca) + llullz=(a)), Now we conclude our proof by covering Q' with finite many Bg, 2 (xo)-

O

Lemma 3.5. Suppose ¢ : [0, Rg] — R is a non-negative, non-decreasing function. If there

exist constants @, A,B > 0,0 < 08 <1, such that

@(1) < Op(s) + +B,0<t<s<Ry.

A
(s—1)”
Then there exists C = C(a, 0) > 0, such that

A

<p(p)<C(—+B),V0<p<R<R0.
(R=-p)®
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Proof. Take ty=p,tiy1 —t; = (1 —1)t"(R - p), 7 > 0 to be determined. Iterating we have

A +
-0 (R=p)°

k-1
A o
@(t0) < Op(t)) + B< - <6(1) + +B) Do
i=0

=" (R=p)°

Choose T such that 77% < 1, let k — oo. O

Another key theorem in this section is

Theorem 3.6 (Schauder’s estimate, divergence form). Suppose 0 < @ <1,a;; € C*(Q),1 <
i,j <nand A = (a;;) fulfills uniformly elliptic condition 0 < AI < A(x) < Al everywhere. If
u € C»(Q) is bounded and

/(ADu,Dgo) =0 VeeCl(Q).
o

Then for each Q' cc Q, there holds

lullcre@) < C(n,a, A, A, llajjllceq), dist(Q', 0Q)) [lull L~ ().

The proof of theorem is same as that of theorem 3.2, just replace lemma 3.4 by the

following lemma.

Lemma 3.7. Suppose fi € C*(R"),1 <i < n and A = (a;j)nxn 5 a constant matric with
0<AU <ASAIL Let f=(fi,...,f), if u € CL*(R") satisfies f(ADu,Dcp) = f(Af,Dgo)
for all ¢ € CZ(R™), then

[M]Cl,a(Rn) < C(}’l, a, /l, A)[f]ca(]Rn).

Proof. Set g = f— f(xp),ug, g, as in lemma 3.4, then divADD;u, = divAD;g.. Proceed as
lemma 3.4. O

Combining theorem 3.2, theorem 3.6, we get:
Theorem 3.8. Suppose 0 < a < 1,a;; € CH(Q),1 <i,j <nand A = (a;;) fulfills uniformly
elliptic condition 0 < AI < A(x) < AI everywhere, k € N. If u € C*-*(Q) is a bounded
solution of

/(ADM,D(,D) =0 VyeCl(Q).
o

Then for each Q' cc Q, there holds
lullcrera oy < Cn, k, @, A, A, ||laijllcaq), dist (', 0Q)) ||ull L~ (o) -

Proof. k =0 is just theorem 3.6, then differentiate and use theorem 3.2 to do induction.

Note: when k > 1, the equation is just Zl'.’,jzl(aU-D,-ju +D;a;;Dju) = 0. O

Remark. (1) Above Schauder’s estimates are so called a prior estimate. That is, to estimate
the norms, we need the initial reqularity assumptions. As we will see, they also perform
important role in non-linear equations;
(2) Theorem 3.2, 3.6 are interior estimates. If has the regularity information of boundary,
one can also prove global estimates, and use them to prove the existence of solution to
Dirichlet problems, see [4, Chapter 2].

Now we can prove theorem 3.1.
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Proof of theorem 3.1. Recall that u € C1%(Q) satisfies fQ(DL(Du),Dgo) =0,Yp € C2(Q).
Take h € R" such that |A| is small, let Q, := {x € Q|dist(x,0Q) > £},& > 0, we have

/(DL(Du(x +h)) - DL(Du(x)), De(x))dx = 0,Vp € C°(Q.).
Q

Notice that DL(Du(x + h)) — DL(Du(x)) = /01 D?L(tDu(x + h) + (1 — t)Du(x)) (Du(x + h) —
Du(x))dt. Let A(x) := /01 D?L(tDu(x + h) + (1 — 1)Du(x)) € C*(Q). Since L is uniformly

convex, integrate we know A is uniformly elliptic. Now

/ (ADUCEFN 1) fy s 0.vg € C(Q).

|7
Apply theorem 3.2 to (u(x + h) —u(x))/|h|, we have
AN c+h) —
el <cfr < ClIDul~0, . VB, (x0) € ..
|h| Cl“’(Br/2(x0)) |h| L”"(Br(xo))

The last term is independent of &, hence by proposition 1.12, we get u € C*»%(Q). Next
we proceed as before by repeatedly using theorem 3.8 and proposition 1.12. We have the

bootstrap argument

ueC Q) = AcC'(Q) = ueC*(Q) = -+ = ueCHQ)

R Aeck,ot 5 ueck+2,a

which lead to the conclusion u € C*(Q). O

Smoothness of Solution, Part II: De Giorgi’s Itera-
tion

However, is it true that a solution u of (*) belongs H! implies it belongs to C1¢,
was stay an open problem for many years. It was until 1956, De Giorgi(Italian, [9]) and
Nash(American, [10]) independently gave positive answer to the problem. Later in 1960,
Moser(German) found a different approach to the problem [11][12].

Remark. Nash is very famous. One reason is that he contributed to many aspects of
mathematics and other fields. For example, he proved Nash’s embedding theorem, which
claimed that any Riemann manifold can be embedded in higher dimensional Fuclidean space.
He also had great contribution on game theory and economics. In these fields he had his
famous Nash equilibrium, for which he won the Nobel Economic Prize. But a more important
reason is, the famous film A Beautiful Mind take him as a prototype. This film won the
74" Academic Award.

The mean theorem of this section is

Theorem 4.1. Suppose a;; € L*(Q),1 < i,j < n and A = (a;;) is uniformly elliptic, i.e.
0 < Al < A(x) < Al everywhere. Ifu € Hl(Q) satisfies

/(ADu, Dy) =0,V € Hy(Q). (**)
Q

Then u € C*(Q) for some a € (0,1). Moreover, for each Q' cC Q, there holds

lull o) < C(” dlbt(g 0Q))[[ull2(q)-
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Why the discovery of the theorem cost tens of years? One reason was that, although
the settings seems similar to those in Schauder’s estimates, but things in fact are totally
different. In Schauder’s estimates we deal with continuous functions. They are classical,

and continuity makes the equation can be seen as perturbation of Laplacian.

However, when we turn to coefficients that are merely measurable, the thing is totally
different. In this situation our equation is somewhat far away from Laplacian. The difficulty
is, we need a method that is completely new.

The key is the choosing of test function ¢.

Now the approach to the question from De Giorgi and Moser is called De Giorgi’s
iteration and Moser’s iteration respectively. They have been the classical method of studying
non-linear equations. Let us have a overview of them. Roughly speaking, De Giorgi’s

iteration is to choose ¢ in the form un? to derive reversed Sobolev’s inequality

C
|D(u—k)|2<—/ (u—-k)%,r <R.
[u>k}ﬂBr (R—r)? {u>k}NBg

And Moser’s iteration is to choose ¢ in the form u’n? to get reversed Holder’s inequality

¥ c
(/ u”) <—2/ u’,y >1,R>r.
B, (R-7) Br

We prove theorem 4.1 by De Giorgi’s iteration. For Moser’s iteration, see [4, Chapter 4] or

[5, Chapter 4]. In this section, the assumption of A = (a;;) is always as that in theorem 4.1.

Definition 4.2. We say u € H(Q) is a sub(super)solution of (**) if for any ¢ € H3(Q)
and ¢ > 0, there holds

/(ADu,D<p) < (2)0.
Q

Clearly, u € H'(Q) is a solution of (**) if and only if it is both the subsolution and

supersolution of (**).

We divide the proof of theorem 4.1 into two parts. First, from square integrability to
locally boundedness.
4.1 Local Boundedness
Theorem 4.3. Suppose a;; € L*(Q),1 < i,j < n and A = (a;;) is uniform elliptic, i.e.
0 < Al < A(x) < Al everywhere. If u € H'(Q) is a subsolution of (**), then for each
Q ccQ,
supu* < C(n, %,dist(Q’E)Q))l|u+|le(Q),

Q

where u* = max{u, 0}.

Proof. We only discuss the case where Q = B; and Q" = By;;. General case is a easy
consequence of dilation and finite covering. Let v = (u — k)", k > 0, set ¢ = v{?, where
0 < ¢ <1and ¢ € CX(By) to be determined. Note that {D¢ # 0} ¢ {u > k}, where

Du = Dv, hence by uniformly elliptic condition

0>/ (ADu,Dgo>>/ (ADv,{zDv+2v§D{)>/l/ |Dv|2§2—2/\/ v|DZ||Dv.
B1 B B

By
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Since 2vZ|DZ||Dv| < AIDv|2£%/(2A) + 2A|DZ|?v? /A and |a + b|? < 2|a|? + 2|b|?, we have

4N?
[ ovper <25 [ e
Bl Bl

/ ID(vO)|? < 2/ v2|D§|2+2/ |Dv|*¢? < C/ |DZ|?v2.
B, By By By

Since v € Hj(B1), using Sobolev’s inequality (S) and Holder’s inequality we have

[oor<(f <v§>2*);|{v4¢0}|1_; <c [ oo

< c/ |D§|2v2|{v§ +0}|".
By

2
n

{v{ # 0}

where 1/2* =1/2-1/n > 0. Now take 0 <r < R < 1, choose { € CZ(Bg) such that (|5, =1
and |DZ| < 2(R—-r)7%, then {v¢ # 0} = {x € Bg : u(x) > k} := A(k,R). Then for 0 < k < h,
A(k,R) D A(h,R), hence

/ (u—h)2</ (u—h)2</ (u - k)2,
A(h,R) A(K,R) A(K,R)

and by Chebyshev’s inequality |{f > k}| = f{ pony LS /{ jory 1k for k>0,

1 1
|A(h,R)|:|{xeB :u(x)—k?h—k}‘<—/ (u—k)2<—/ (u—k)>.
* (h =52 Jagnr) (h =12 Jawr
Putting these facts together, we have

2
n

2 C 3 9 % C ~ ) 1+
-/A(h,r) (u B h) S (R - I")2 </z‘;(h,R) (u h) |A(h, R)l < (h - k)%(R - r)2 (-/A(k,R) (u k) ) ’

or

C
(h=k)n(R~7)
Denote ¢(k,r) := ||[(u — k)*||28,), let ki = k(1 —1/29),r; = 1/2+1/2%1,i = 0,1,.... Next
we inductively choose k > 0,y > 1 such that ¢(k;,r;) < ¢(ko,r0)/y'. Clearly this holds for

i = 0. Suppose it is true for i — 1, then

(= h)* || L2s,) < (= k) ll,50, VO<k<hO<r<R<L

(2+1)i o(1+2)i

ki, i) < C ki— ,i— 13 <C——
¢( r) k% ¢( 1,7 1) k%y(1+%)(l‘_1)

_c (2“'2i )i (¢5(k0,"0))3 ¢(kofro)_

v k Y

d(ko, 7o) *r

Now we choose y% =21+ and d(ko,ro)/k = lu*llL28,)/k = C~3, then ¢(k;, ;) < ¢p(ko,70)/Y'.
Now let i — oo, we have ¢(k,1/2) = 0, hence

supu’ < k=C'|[u’l| 28,
Bi/2

When u is a solution, u and —u is both subsolution of (**), hence

Corollary 4.4. Suppose u € H'(Q) is a solution of (**), then for each &' cc Q,

A ,
lullmqa) < € (1, 3 dist(€, 09| lull2a)
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4.2 Holder Continuity

Next we show the Holder norm of a solution to (**) can be bounded by its L* norm.
First we need some lemmas.
Lemma 4.5. Suppose ® : R — R is a convex Lipschitz continuous function with ® < 0. If
u € H'(Q) is a supersolution of (**) such that ®(u) € H(Q), then ®(u) is a subsolution of

Proof. First assume ® € C*(R), then @ < 0,®” > 0. Take ¢ € Hj(Q) and ¢ > 0, we have

‘/S;<AD<D(M),DQD> = /QGD (u){ADu,D¢) = — /Q(Du,D(ﬂp(D (u)) - ‘/Q ¢® (u){ADu, Du) <0

since —p®' (1) € Hj(Q) is non-negative and (ADu, Du) > 0.
For general case, take a modifier p, set ®,. = ® x p., then by convexity of ®, @, is also
convex and @, = @ x p. < 0. Hence /Q<AD<I)8(u),D<p> < 0. Since &, —» ®,& — 0, using

Lebesgue’s dominant convergence theorem, we get what we want. O

Lemma 4.6. Let u € H'(By) be a positive supersolution of (**) in By. If |[{u > 1} N By| >
g|B1| for some € > 0, then

A
inf u > C(n, e, 7) € (0,1).

B2

Proof. Consider us = u + 6,6 > 0,v = (logus)~. By lemma 4.5, v is a non-negative
subsolution of (**). Then theorem 4.4 implies supg, , v < C|[v|lL2(s,). Observe that [{v =
0} = [{u > 1}| > &|B|, by proposition 1.22, [[v|[i2s,) < C|[Dv||2(5,). We show that
IDvl|r2(5,) can be bounded independent of 6, then supg, ,(logus)™ < C, where C > 0. Then

infp,,us > e € €(0,1), just let 6 — 0.

To this end, choose ¢ = {?/us for some ¢ € CZ(By), then
2
0</ (ADu(;},D(g—) =2/ ((ADlogud,Dg“)—/ *(ADlogug, D logus)
Bo Us B> B3

< 2A/ £1D log us]1DC| —A/ 21D log us|?
Bz B2

<2A(/ |D§|2) (/ |Dlogu5|2§2) —/1/ 2D logus)?.
Bo Bo Bj

Hence /32 IDlogus|?¢? < ﬁfBz IDZ|?. Now fix ¢ with £|z, = 1, we have the desired

/12
estimate. O

Holder continuity is a easy consequence of lemma 4.6.

proof of theorem 4.1. First we show that there exist y = y(n, 1) € (0, 1) such that if Bog(xg) C
Q, then 0SCpy ,(xo)U < YOSCR (xo)U-

To this end, by scaling we may assume R = 1, set @; = supg, u, 81 = infp, u. Consider
two solution uy := (u—pB1) /(a1 —B1) and us := (@ —u) /(a1 —B1), then u > (S)%(al +81) =
uy(uz) > 3, hence there exist a u; such that [{2u; > 1} N B,| > $|B|, then by lemma 4.6, this
u; satisfies infp, , u; > C for some C € (0,1). This equivalent to infg, ,u > B + C(a; — 1)
when i = 1 and supg, , u < a1 — C(@1 — f1) when i = 2. Since a1 > supg, , u,f1 < infg, , u,

in both cases we have oscg, ,u < (1 - C)oscg, u.
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Then by iteration, when Bag(xo) C Q, 05Cp,,, (x)U < y*0sCpy (o)t for k € N. Suppose

0 < r < R, take k such that R/2"! < r < R/2*. Note that y* = (%)7“0gzy < (%)710%27, set

a=-log,yif y >1/2 and a € (0,1) is arbitrary if y < 1/2. Fix 2R = dist(Q’, 9Q), then
0SCB, (x) U < CrP08Cp, (xg U < Cr||ull=(ay) < CllullL2)r®, xo € ',

where Q% = {x € Q|dist(x,Q’) < R}. Now for any x,y € Q' such that |x — y| < R, take
r = |x —y|, then

lu(x) —u(y)| < oscp, (xyu < Cllullr2@r® = Cllullrz@)|x — yI*.
Together with corollary 4.4, we finish the proof. O

4.3 Solution to Hilbert’s 19" Problem

Once we get theorem 4.1, we reach the last part of the Hilbert’s 19** problem.
Theorem 4.7. Suppose u € H'(Q) is a local minimizer of &, then u € C»*(Q).

Proof. The thing is basically similar to those of 3.1. Set
1
Alx) = / DQL(tDu(x +h)+(1— t)Du(x)),
0
by the equation (*) of u, again for || small and Q. = {x € Q|dist(x, IQ) > &} we have
h) —
[awp D=t pyy 0 ve e @),
Q

Hence theorem 4.1 and theorem 1.20 implies

-+ h) - “+h) -
ulth)—u <C ueth)—u < |1Dullez @), VBr(x0) C Q..
|h C"(Br/z(xo)) |h| L2 (B,(xo))
Thanks to proposition 1.13 again, u € C1*(Q). o

Finally, we have solved the Hilbert’s problem.

Theorem. Suppose L is uniform conver and smooth, then given any g : 0Q — R that

can be extended to a function in H'(Q), there exists a unique function u € H*(Q), such

that u € C*(Q) and
/L(Du) = inf /L(Dw).
Q weHY Q) Jo

Wlaa =2
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arEm KT

A SRS TUART ARARES AR 193 777 T A 28 5 AR RS AR 8 S5 A DR B AR M o T - 8
gy, TATRA A5 TURT b 2RI AN VE BT, 5 G 22 LB SRS Al ith 22
W, BIE AR UARPRGLT 61T 5 870, FATRA EAE L LRI R
— T HIRIE AL, I e /48— Ff BLIER 89 Mordell-Weil & B 17505,

A

HRE M e—MERRIY, (NN, BT RE R M BTN S9E — N E
BarN M ARENESYE » - M - M, 958, XESEE o SR XA RIER
AR R [ 2R 4 N5, e b A R S R ERA], XIERFIE M AT DLoE SUEAHRE 70(M),
MTTIATHE Vp € M, BB 7 EYE 271 ({p}) B0 R T AR 70 (M). FFHIEATE
BN, B IR TSI, BADER DILEEEARE -t (M) FEFE M b B R =R S A
LRI 17T A2 [5].

TRBAVRE TR =G, XT2—MiE B4, BERA4EEF - T—A
FE I, [N AN eI T AR BN 4E A L. B S5 MR 2 9 N (principal bun-
dle), HRFIR 2 AR I T HEH . ASCH G K555, # 2 BARTRR Y 10 3 M (R B B R e
N Lie #t,) FFLA— 26 8 () 5] 1 Sk — € B LR B, Gn SR 52 0 2 4 A SR A BRI A
R, ATLLSE [2].

EMX 0.1. % G ZH—A Lie #, # (E,n,M) A—/NEK, & E.M Z%%HRBRF, b
HrE-MRAXRBHRY, LG EE LALER, LR T 54

o R pe M, H4% 11 ({p}) & G-3hi;

o BEMWBFEEZ (U)icr, LHEEWMSRIE ¢ : 7Y (U) - U; xG, A#HL G-F%.

PER— AT AT 4R N, BRAI A B A e MR, A 4 LIk 55 i 3 g AR D 32 A
IXFERFIRBIAAAE, AL Z MG . AR SCSON IR 5 T, AN Ay s AT FroX s, e

£ AME S

ENBREIZAAE T AT 4E0E Lie B, BT ULRA SRR, WA PLEK £ NN &
M SXAEARFEC . N T BE NS ERAR KRR AR IS AN AT e A [ B R SRR AR E VA BT
SREA — A RE R B R VO T (xa) © y = x @ (ay) EFERIEAE, S5 2, 1
AAE AR RIR G 2] T — . IUE— D ENCLRIRA T Lie BERCHEM T, W03 Lie B
RELAE 25— AT, BATATLAAELE, BATHR AT DUAIE — DB 2R 4E .

FEMRIE N A G-IEAFH, (ERE 2 N 2RI R, FATHEXAERE RO R
) BATAILLGE X Ey = (E X N)/G, h R EBHERZ (v, u0)g = (xg, g 7'w). MIGIHE
R SCREBISE, itk BoATT LU o R 22 e

EF(E R BIEK, 2019 HEER 2240, IFFH: agitatobkc@mail.ustc.edu.cn.
W72, 2019 F/DFEPEERL, WEF: scgycza@mail.ustc.edu. cn.
FafHER: 3 A 25 HER, 5 A 10 HE—IE, 5 H 10 HiE%Z. fatkdmis: 70K,
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ExN — S FE ")\?M

N -
-
-
-
—~
-
-
—~

(EXN)/G
FATTAT LA RS2 — AR A 4E A =38~ MUk 2 an T 43 210 1), sibr B R fR A
At (U) = (m7'(U)x N)/G =~ (UxG) xN)/G ~U x N.

I BAEET (En,an, M), BFRAMEETEN (E, 7, M) LA N AL 4N, 24 N
IER LIS, (EHRARIR, XAG IR A, X 2 = I —Fh LI A Rld st &
DA A A, — KA SR T, MR AT 4E R 3G R 5 o3 IF, FRATAT DU ROV 2 16
PRI . CEPERV 2 BAR R X — R A H R 2 Ab.

AT =40, G2 1R AR R IR BMIE 5 L. XM, o e T
Lie #f G 4 HRATER, 1658 LRIZSFIRHE N TR 2 B, £
ENX 1.1. (E,n,M) 42 (E', 7', M) ABAA G-, WELAWRES ¢ E > E BhA4%
Az B egR A, A EL#HE G-FE.

A TRZ, FRE LCERIF A, A, SEBR EBRATERE AT LLE URRIE A3
AR W FIZS, BT R 12506 Bl i 6 25 3 3L, W1 R
ENX 1.2, B4 (f, f) AR G- (E,n, M) 4= (E', 0/, M’) ZAWRE, & f:M—> M
Fo f E — E RAFAGAFE, LipLde T I%R

HMAZK f & G-FEH.

— AN AT B R TR I LM, B M7 = {pt}, T E’ =G, Wi E = M x G. BAl
FR—A I PG, 8 Ee R 1 FLE . — AN B (1 4518 2 35 25 A S A 1 DU 4
L, X S mEMN AN EZ AL, WRICH A4 Lie H 1M 3E ) & 7% 8. (S
LR N RN k I ENE kAN AL TE S BB AR, ) ) A E FLAL.)

IXFEI RS e BN SRR 4 [m] 4G, 48R, A b [RIRE T LRI 4z 01, F B BT i
EEESRapsA i
EX 1.3. 42 EM (E,n, M), XBHRH M FXFmE f: M — M, RMNZLE
F(E)={(p.x) e M' X E|f(p) =n(x)}, A [ = 1/ #H B ROIEZ.

ZAEBU BL R S &R, TAAE HIER V)

= f
E
\\\ g

A

FoE) — j
M —L s m

oL 3 I SRE (9254, FORETT LR B A TRAT 7 AT o S R A 2 2, SCB b, SR
A R, T E R b R HEE, TR A1 kK T Cech LR
fO 5 S, AT L2 L, [4], B8 2 5 1 45 Sl 5 gt 2 5 3
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FE 1.1. M b8y G- ——x 5 F H(M,G) v TE.

BOTE & U = (Up)ier P AN E, AR G-E2MD R ¢; - n71(U;) — U; X G.
RN ERM TS U; nU; Bt

ot (UinU))xG — (UinU,)xG,
fEeE BT RLEARIE N (x, g) > (x, ¢ (x)g). TAMEH W 2 a2 e [, DU B B G ) 3

(id,cij)=gpjoprt

(UiﬁUj)XG >(UiﬂUj)XG

7T_1(Ui N U])

WATHRG S XHABERE (U, ¢iy) E— 85 FHlae % voE £ NS, BOVAR Fed
T AR T LI SR R A AR AR R & TR BT E X (U, i) BREEH T —A
H' (M, G; U) H i\ EREZE. TR0 5 U 2487 FUE A, Bt 3 HY (M, G U')
TR, XL 1 TN (M, G) P i—A LR

ik, —A H' (M, G) FRITTEWBGEH A M _EH G-, K A8 2 SE B 6
—h& U, EXRNE U x G, A EFRTRT IR o HHAERTER E. BRI,
BHEMIELZH E = 11,(U; x G), RJETATH TAEE LA R L MR R R. 57
HEELFEMRR: W (x,8) €U xG, H¥ (x,g;) e U; x G, Bl M ER—RfHE 78
TAFEPITFE b, A ZFHEN (v, g) ~ (x,8)), HAELE ¢ij, 15 g; = gicij(x). HILAT IR
B (cocycle) &A1 cij o e = cxy HIE SUBEAE TR R RISL SN —NEM KR, Bihk
UE Rz R A AEEME. NIE W E = E'/~ $ULBHE - N2 E g —1
M L) G-FM.

PRSI IR R R B8 UE - [ 1 A 38 e ELWE ), IX A8 BE 25 IR R R 152 58 .

B4t 5 o

Ji T L B ) B AE A T2 X, D T PRUEFEAS FH BB O R A TR 210K, T T PR s b )
S L E S, RE S ARV 5P A T T =8, — S8 R R IR 2 TR 4
.

EX 2.1 8V ROEZE M REXBRAY, L LY VAL kK RIEPTHRXN 0w A G, TM -V
B9 k-, BE CO(M) EXT, &AMIREF o 89ESZ QK(M,V).

KRR 8 XA RN T 5 BRI N PE RIS SRR SR T, SEbr bl B anAad
w=wiey +...+wrer, HH (€)ier .k AV BI—HEE M (wi)ie1.... © R T
MU B d, &P I A BRI, AR OG0 — NI, Jesh e X
EX 2.2, A w € QX(M,V), \1 wy € QUM W), N wi Awy € QM VW), BARE A

.....

(w1 Aw2)( X1, ooy Xpwt) = Z sg(T) w1 (X (1)s o X (k) ® W2 (Xor(kat)s --os Xor (ki) )

oeCry
Hb S, kv p MEMRZH, #RS sgn: S, — {1} £ A AR T AL
BB R A8 F B . RV = W= R, A R TR
RxR - R, XZHiES Q*(M,R®R) — QK(M,R), NIl 538 KHRWAS. BLEE Xt kK
W2 MES BPE B AR S I BT —FF, thln a2 = 0, ANFREAH L.
LaeBR EFRATAT DAL U AFTIB LT E R (good cover), RMTEER R Z A HAT4E, X FEAT LA HY(M,G;U)=H'(M, G).
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XFF Lie B, AR E RG], A MESHONHE RN, SLhr EARARZ
Ad:G — GL(g),g — d(x — gxg™h),

R B2 ST A g A 2E AN ) B 3 B R B TG A B 2% ) R b 90 2 S ), 9 0
PLE#EAE.
H TR, AT R & X E B! 2250y J Ul R, BRI e X7 :UR
%2, AR, By 7 s LT R G A3 ) b 7 [ S8, LA T Sl e B TP AT
B, BARE A EoRUE, RATH A BRI, AR L REATHAIDEENED. £E xcE,
AT T 30 ML IOAELE, ATUARAS TLE R4 M YIZsIaR G )2 maim. w5
ZAHET G A Lie BE, HOR R S AL R D)4 (1@ B ek (D) e S kR [ 4, S mT AR
g. HE2 E R¥ARD, WAZKZAVER, FXEERIIEE v, g - T.E N g xg
(IS, DRI AT TT A3 I P 6 1E 2 71
0—>g —>TE

Ty

> n(x)M — 0

VE RGBS M BIFAEAF, 3T AR T H2, R RWIRERR R ARIE A, 1L
i B SR B I, I IRATH S AR R A D), DUR RS I X B RS
FNBATII IR T5 B8 SL—SE -V, FR v, (g) RTEE T2 00, MH— MNP0 H, $RRAKE
FAsla], XN M)A .

o TRAA IR T REREE x ARG RSN, 5 2, AR FAT DUER—N
WM o, B DRNEHEBSE w(x) : TE — o, HAXHON FRE IEES 5 i it — 4N
M, M H, BB TN, #1522, BITERN T — w e QUE, g).

o TR FITE M IRE AT 20, SEATRATE & B BA BER P AKE P2 U G
TCRANEH IR, AT 1% A B2 2 F R, BRI 5, & CARIEM Ry - E —
E,x — xg, WK (Ry)..Hy = Hyg.

TATSARF5E T 0 AR — > 32 A BRES B G 264, BEE R

EX 2.3. =/ G-2A (E,n,M) Li98% o & QUE,q) P8I LE, A HA e TAREEZK:
e HR xcE, B%H wyov, =id;
e & H,=Kerw,, W Vx € E, 2K (Ry).H, = H,,.

EREEE — 2R ORI E SO 2 UKL, Tﬁﬁiﬁrﬁ 2 ERR M A A (5
— R HALIT) SN HIRIR:Ryw = Ad(g™") o w. N HTIE I A7 B THRAIE B — TR IR I 2R ISR
LS O NYE i

HERR. = FEEFE A AKCFE O 0, UM SEhr E R TEHE v (X), HF X e g. &
WA a > xag = xg-(g7"ag), LLZ T T (Ry).ovy = vigoAd(g™h), MEMEI R (w) (vi(X)) =
Wag (Vg 0 Ad(g71) (X)) = Ad(g™ ") (X).

e BT —8 HFUE (R).H, C Hy, T4 X € Hy, G w((Ry).(X)) =
(Ryw)(X) = Ad(g™)(w(X)) =0, MM (Ry).(X) € Kerwyg = Hyg. i

2 TS AR, AT BURIGSy JURTDIRRE SR AR, R 7 S F B o0 il 5 A AR TR 2%
ARG XA AR RIAT 58 T, T s LM O E S, AR EIRATIT U675 8 Sl 22,
EX 2.4. = we QNE,V) ARARFW, EREHEE =1, k, H X; LA, N
w(X1,..X) =0
EX 2.5. &% p & Lie # G 9—A V-R7, # o & p-FE8, & Ryw=p(g™") ow. #A
EA p FIL, N w ARATREE. AAE p-F T8 kB XESITAH QY(M,Ey).
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A% T 3R, X — [ — LRI 250, A2 a0 e Es B v e, JEH 2
2- T3 AEH WL B NG T U, fR E 3 E LR do + o A w. (BFEIX BRER] 1+
W R B dw € Q*(E, g), Tl w Aw € Q2(E,g®g), BTN T B A 2k 2 [a) A [
MLBH A WIERIINELL g @ g THITTERAZN ¢ THITGEE? HRF R, XMERZ g fFN Lie
REETH Lie 75 [, ]! @1 Lie 75, A o A 0 BBRILA [0, 0]. FEEIXEA—
AP R B 1) R FRATI 45 HA I A S
EX 2.6. BEHK F, =dw+ 3 [w,w].

XFF 2 FRATT AT DA Q0 P A e 3 R B PR
EE 2.1 M- AEREHBKX F, A QXM E,) THRFHLE, AP G- GL(g) h Ak
EgF A& T
EIE 2.2. Bianchi 8% XA dF, = [F,,w].

AL o s, X — A SeBr Eo 2 B T M T AR A A R FRATT SN,
5 ) 5 ARG T LT A P 3 SEBR B0 BT 7K P 7223 1) () T AR, 1 L Ak R s 1 K
HaeE AR, WEREE RS0, IERAE— KK Riemann JLFATERFE H B VFHE 1 E X
R NS SR A, R BREE B0 A 1k — AN B U S T E OGO AR BR T RIS e
N Levi-Civita B4 2 BRERARY K, X L8 4R P4 # ] DL e o S50 20 JUT DL
TE ) JUART B H S A A7 AE T R AT DL ) = 4 JUART . SRV AE D SE R R, J—Fhow i B A7 7
WA AT T, e & J U2 Newlander-Nirenberg & it B UL & 45 #4) (1w AR 44 X6
N—FFR A Nijenhuis HE5 1) 4= 7 5.

Bl F 5 E AR %

RV M E = MxG, 3 Hib & —> Lie #_L#J Maurer-Cartan JE R wo € QY(G, g),
BATATLECH (wo)g = (L), X— A LEIESH (1, BAHFE]. Kb b, & n] DAL
NG - {pt} MBS BATEN m : M X G — G, \TIHE wo ¥BEIT E b, &N
Maurer-Cartan Bt4% wye = mhwo.

PATRIGURIX SN — AN, a0 e CIRERI ], e )R E8 — 46 ] DUAS FH B
RS am L, W R

o MEH x = (p,g), MILE v, = d(a — (p,ga)) IR I— g XTI B,

21 wae NEFe—A g WGBS, MIEh L& 5 N TER);

o VEREF] my MR, AN Ad(g™h) RISZHRE, bR B R EIAIE wo WL E U AR AR

A, e R R R A

R;("‘)O)a = (wO)ag o (Rg)* = (L(ag)‘l)* o (Rg)* = (Lg'l)* © (La‘l)* o (Rg)*
= Ad(g™) o (Lg1). = Ad(g™") 0 (wo)a-

PRk E— XN R, AREED] Fuy = 75F 0, LHEEHE vy N G — {pt} L
) Maurer-Cartan B4% 7. HEIR 2.2.,F,, LK TH, (B2 G LATE UM &40 2 EH
(), PRI AR A 2 — A 8, Brbla i L ih 2204 0, A-F LA | Maurer-Cartan Bk%%
FE T

RUTHE ) 1 = AT DU Rom i i A, [FIAE, 5 B A IBeas thm] DLd I SR s HE 2 A
by BONAE B RIS, R SRR A — N IX i, BRI —FR p: G - GL(V),
XKFESYIMES dp : g — gl(V) =~ M,(R), Itht n=dimV.
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BAVEFER Ey 2—NMEERMEN, R EFAAT oxv, Hd U cM 2—MF
. NEMZE] Ey = (Ex V) /G, ATENALAI—H V B2 (e, ..., e,), HE—ANREREH (B
JUIEH)s : U — E, WX 7 — DR ([(s,e1)], ... [(s,eq)]), Fer [[] REEHr2E.

IS REEE IR I, FATH s*w € QY(U, g), #T dpos*w € QN (U, gl(V)) ~ Q1 (U, M, (R)),
LT AT AR5 2 SR I 4% T B X RE — B ERAE R ok, R MRS AR B T AR B IRE,
RATH B TR B RE A N T

R F FRIEM

f£ Grothendieck ¥HFMEHRH Z J5, PPl T SEH IR TE I BER 45 DLRGTE A% A8 tH
St AEBEATH BATE W R EAREUE S T EMN, BIET (torsor)?. FA1Ly e B3 -
7B BRI Y, (EAER E BT,
5 4.1. ZEAE Galois % K/k, G = Gal(K/k). AfmiBit G &£ K L&tk R ,G 4k A&
SpecK E. &K SpecK #9JR=Z 10 & —AN &, 184F B RAVE R 1% F XA & ey “B 3
K. TARIE K/G = k(#FH k-&W= ), Kw KA T A SpecK — Speck A G-Z
A

AT ABENE SGER K, BATETZIRT Lie BRI, BIAA A I RETE.
EX 4.1. FrifREHLZ-NMREIE Glhk, BANTHEESR K[k, /5 G # K- AR

G(K) = Hom(SpecK,G) A #4&EM. st— A S, H LayBM R4 G, HRAT
H& S LayA T, A T-5 G(T) = Hom(T,G) A B4,

R S 2 HE S, XA E ORRIER G R S BRHE, %ALY, 1
Yoneda #t A\ Sch/S < Sh/S T G XtRiEEZ.
Bl 4.2. AFTEEEGEHERAT, —ANELE G-£4 G > {pt} ZARMRAFLMY, L3l
2 G AIERERAEGE L Z—E0Tld Cech LRA H({pt},G) = 0 F. &
m, ERFERLEHNTARE LB, AMNBELARFFHEA G - Speck. BRTEXA
HHEREL, ERFZAGRIETE—H, EARFANE G PH—HLRAMNE, @
H! (k,G) = H! (Speck, G) —f& R4 A 0.(TR [9].)

(A2 EREE LFEUE HY(k5,G) =0, H ks BRI P, #1522, R G fiFF k5 -
38| Gys — Speck®, W'E UK NEN. ZIRBAT G — k BIAF FUNE SE I RJE T 3
4%t Galois B Gal(k®/k) FIRICERRIHEE (twist).

5 4.3. e ATPTE, HEATR Galois 7k K/k, B Galois # G = Gal(K/k) Fa¥ Kk 3
n=[K:k]. REFETHI KOG AR AZIE, LT K K = k(a) =k[T]/(p(1), p(t) £ a 8
BN ERK, ETHHCLESEA p(T) =[1,(T-a,;). EHLEE] b EXMNA

Kok =k IT1/(pe) = 1T1/[ [ = a) = [ [ 0171/ = an = ()"

S$F oeG, XK &k Lg—mER (B}, CELERMTAE (k)" 89—8% {¢}, G £

{B:} LAFBAER. R op; =B;, 4 o & (k)" LOERAEH ox; =x; . TEZ k°

LOFHBN G AAT LM ARMER, Lt AB, A SpecK Xspecr Speck® & Speck® E

FI G- M.

5 4.4. £ & k Lo9MA A E, KM@ CEAHLEM. S THEES chark ZHFWEH

#¥onnl:E—>E ZAR n KBS x> nx. 54 [n] 898, B2 E 8 n-82.58A E[n], X
2R LTIE R Go— i SRR
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A=A 0 EXREKEF. TYEERA [n]  E - E 2—A E[n]-£ 4.
— i, K E@mey E LB Abel 5 A, iX R B AE s L. Abel 55 2 45 569 % & (proper)
RECEE, T VAR C — R A KT, JF AL R R4,

AT PR — 26451 - R FRATTAR B 7 — @ B, T2 A 3RAIRE EAREUG R = M) 5E X

B ANEE R ABUE L Zariski SRINATERTAN, M DUR L 12 LERR SR b 1t iy
[R5 4.1, HJR 7] Spec k 1€ Zarski $H4M N —AN il, B IEHT 2 SOUH F 2498 H fe
BN EN. BT EPIX— 1)@, Grothendick 37 T FTEATE (site) FIMES. A rW &2
T (MR, REUE, WESE)X, MHRVE2 I (3t EREA 3 NEE) RETT A2 8] )5
S5 HME RS T, X HME BARE S B S SRS, BAoRU, X T A (R vk
JEHD) JulE C BIXT G X, — RS (X - X} iR S AR RIE Y X, WHRDY X K8 . 1
uls C LR —AMIE A(site) 28X C PR — DR X, #A R X MBS Cx, W2
PLR = A0

LR U — X =R, N {U - X} e Cx.

2. W (U, — X} € Cx, MV — X &= C h&SH, W4 {UixxV -V} eCy.

3. WH {U; > Vi}; € Cy,, B {Vi - X}; € Cx, W {U;; — X}:; € Cx.
Bl 4.5. % S RAH, (Sch/S) £ § LM MR EGTES. Jib % th — 24289 T REZ )T

o (Sch/S). W93 H A A S EH, SHAFESHO.
o (Sch/S)py® 893 Z A LIRS LB, SHA LR FEARETES.
o Xy WM R AL X LW Y, BREMESH Y - X A-FEMN, SHAARTEL.

P ZEEAR T A G RHE LB LB E, KRR AT, 5 AR KFRAZR, fopf 42
5, AL
KTALTE R E Z M5 1525 20 [10]. N1 RPZIR 4 H e+ 1w L.
EX 4.2. % X, Y £ S LoyA, HiX G R— X L9BEBA. wREH f Y > X i#
RAGE—A X8 fopf BE (Ui > X}, %R EE i A G-FLHRM U xxY ~U; xG, N
e fY > X A=A G-2eT (torsor).
FiG. ATHRZE, &MFEU=1U;, U LR X & fopf BZE. ZIH, E@RGZLHFN T4
REE—ANXW fopf BEU->X, A GFEHRM UXxY =UXsG, WA f:Y > X A
—/~ G-7&F.
5] 4.6. 3t F 6412 G, AN M £ G-ZAGELH Princ(M). ZMNTAAH G-EA 895
K20 BG, #AIEZRN M, AR L (M, BG] = Princ(M), B ARKEES LT £
I, BT S L2 G A2 S EMA X, i X L8 GRTFELSH F(X), BENER
M BG = [S/G] # % Hom(X,BG) = F(X), 7idiX 28 BG 8% NHRAHM, mMARHKE
(algebraic stack), ¥R [7, 8.1]. B#HI, 5 £ =8 BG A d THT F, 4 BG & G-7t
FeymiR = (fine moduli space).

T2 AR A B A R R —2e N IF HF 55 Mordell-Weil & 2.
EX 4.3. % X A k Lo9R#EK R kK 8953, WARESH Speck — X A X #9—A
K- A& Rk X 8923 K-AR LA X(K). mEIR (number field) Z45 Q 89 A Ry
K.

S S AVE IR 5 AR, T B b B PR T E
XA R g B

SRR AT R AR TR AR S, B AE R AL T A A B S S IE, L [6).
8455 fppf K Hi%iE fidelement plate de présentation finie, Rl 52 F1HAG R JEIR.
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EH X(K) R OSURZE X X MRS K AR A .
WL 4.1, X T >k A=A GF, RACFLEEMRE T AH—A k-HEE.

WERR. VEEE b LRIHE TR k- B RURAZIE T — N, R e FLE T a]

WX, Y 52k EARHUE, ¥ G2k EAREOHE, B £ Y — X B Gx = Gx X-IET
R x 72 X B9 k-BHE A, 28T x : Speck — X $ilAl Y, A1 E] Y, — x = Spec k. X2
— k B G-BET, RS R T —A4 HY (k, G) G E. X2 i, FATa LR HY (k, G)
HFRIICE KK X(k), B

X(k) = U (x € X(k): ®(Y, — k) =7},
oeH! (k,G)
KB @ {k | G- WET } > H'(k,G) 2R il Jig 1 F1— b F K —— X L.
el 4.2, RMNAEESMAEF (xe X(k) : P, 2 k) =0} = fo (Yo (k)), ¥ fr: Ve —> X
A o Bl (twist).
E B AR R, (ER 3 twist BAARRIPERR, AT 0L [8, 8.4.].
NIIES]
X =) foltell).

oeH! (k,G)

MR R 5nTE 7R 22 Abel #%, 84 B R 22 900 I R AR B 45 #. Mordell 7£
1922 {EBH T X808 K EMEMZE E, 5 E(K) AERAERT, M5 Weil X1 Abel #&IE
B Y [FIRE 250, S8R HAE B 23 A 8, 56— &R 2wl 2 TR T Y
EIE 4.3 (59 Mordell-Weil 5EH). & K ZHIR,A & K L8 Abel 5%, N3 EEEE S n, A
A(K)/nA(K) &AL,

JUERR. ¥ A BAE (SpecK)os LIIZE. X} Spec K LIPS, B n 5545 0] : A — A 2
W, A IEA
0—-Aln] A5 A -0,

M S B R K IE A7

S AKK) S AKK) S HY (K, A[]) = -
F2 A(K)/nA(K) = Coker(A(K) 25 A(K)) = Im(A(K) 5 HY(K, A[n])), REAER § ({52
AR

SRTFT ARG 4.4., I A(K) 5 A(K) WTUAFAE An]-WeF, i 0 : A(K) — H'(K, A[n]).
A PAISIE 07 = 9. i R EAE Im(07) A R.

K _EFE X R G-eT f:Y — X, BAl1%E X Selmer £
Sel;(k,G) := {o € H'(k,G) : o, € Im(X(k,) — H'(k,,G),¥v € Q)}.
WAV T 4518, VW [8, 8.4.6:
Rl 4.4. 4o X AR 40, N Sels(k,G) A Ik.

HFHEERIHE {0 e H(k,G) : Y (k) # 0} c {o € H'(k,G) : Y, (k,) # 0,¥v € Q;} =
Sely(k,G), FH Q; /& k WA RS, Hoe i T IER. o
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2 B DURE: E s/ M KEERY
T 4 E IR FTIERA

#H]—FL

BRI, AR TR, B8 b 7 50 DUREE B RAa S0l sy sk A~ 5
Eamaitzm. ZANERATUEE—DNESRAR Freiman SEBH. EAH, &
A1 5% T B R I AN [ R G S T 5 5 Bl i — Lo Bk e, JF 45 HH B A0 78 B A0 — AN iE
1.

BRI KD

HEIARA G, —ADEZEWT TR BHET FIAE Dk WEREHEH. JAME
B G RAHE, s() 2 G PR EEESIPIRE (WEEKH . Haar JE. Banach
W, ). MT G RS A, B, BATEX

AB={ab|a€ A,b € B}.

G R VUREER, ATEEH + kKR G B iz &, XHEIRAITH A + B KRERE
G {a+b|laecAbeB}. NIEBE n, BIAEL A" ={a,---a, | a; € A}, LY G NN
IRBERS, nA ={ay+---+a, | a; € A}. —fIP), 24 s(A?)/s(A) LLBUNE, FRATIK ATE s(-) )
BOUR) BA Mk A2 — MR ]

LIATINELIE Z HEENLRIRICA R Z N o m Ak A B, BHEF], IRRIMET,
|A+A| RGN A2 N5 — DA, WRBAVHEAAAE DN IESEHE K W2 |A+A| < KA,
o A —Ei e — RN SE M. E A Freiman @B 5 IRERAT, WH (A + A] < K|A|,
M2 A We— MBI T K B RREPR S SR AR EL (generalized arithmetic
progression) H1. X B SUHEAREEL (AR N EmYEE 2 H) 218

D
{a+2kid5.kiez,0§ki sM},
i=1

Hrh D RERYEEL, A MBI EAREEM L.

X F— A BRE DL/R#E G, Green A1 Ruzsa WEB 7 RMAIFIZE R WHR A 2 G —14E
THIRE, H |A+A| < K|A|, A A Bi—DNEBFKER TP EHREL (coset progression)
8 TR NRBEREREN H+ P %S, K H 2 G B, P 2— XER

FRGEL, VLI — BB R g8, FERRR R BT DL AR & TR AN EUE 0 R
DAL S FRATT T AR A 4 1 26 B AR N IR, BRI BRFAT DUREE BN kB G, 450 E#VR
—ANFRE XA GRAEHARAE L E B — o, HlanIRAIHE R 2 IAIN Flx, y], HH
F 2 B RAE IR, T ARRIIZ A P e Flx,y], UK F ERARE A, B, & X

P(A,B) ={P(a,b) |a € A, b € B}.

PEEAEE: H— L, 2012 FECERS %P, MiFH: yifan. jing@maths.ox.ac.uk.
FatHEE: 4 A 7 Hkfa, 5 B 10 HE%. fifkamid: ik
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TAIRT] LB AE B A PR DURBERI 454, WH |P(A,A)| < K|A], IBAZ T P l—e 2
FEIX PSP DURGERE P iy a6 AERXMIFLLS, — DX FRHT Elekes-Ronyai R [5]
PFERATT, P BAR f(r(x) +cr(y)), B4R f(r(x)r(y)"), X8 f,re Flx],ce F,neZ. fij#
BIUE, P BB LR DR B ) B2 9 ek f] LR B4 i)

2 G ARIAERT DUREERS, BRI GANRAFE. R G RN KES A, T4 A
— B W — AN AR DR A A g A ). X AN ILR T PLAN Gromov [1)96 T 2 TG KA
HEH (4] B, EEMZIE K H Breuillard-Green—Tao 2% TIEfUHf (approximate group)
IEE R E R (1], — M EERT DURBE R, G0 TR EA G /N 5k, X PR — R ARAE
“group growth”, HAITEIEAHMER, BEE, £0g, AEE AP HEIEEEERMH. A
PR AR R AE R DUR BS54 L.

B LHOR T K EES

LN Z W, ATURE S E B, SMEENANETHRE A, B, TANTEAH |A+B| > |Al+
|B| - 1; XL TIXFIGH FEAR Bk T — AR, 15209 5K 0 & ME A
K. NTEAH 2/ pZ, /N ik 4§ Cauchy-Davenport EH A H, BIX FIETES
A, B, BATH |A+ B| > min{|A| + |B| - 1, p}.
T — M R BB R B DUREE G, % w22 G EI—A Haar WIE, A, B B ETER
4, Kneser iEH T

u(A + B) > min{u(A) + u(B) — u(H), u(G)},

Heh H & G I RKIE T4, Kneser 52 HLLE R HE KB AR DURBEHET B Kem-
perman 25 H.

A BNk BCE B B NIk AR A — M S SR I 5 A MRS B0 Freiman 3k — 4
EHEH, MR ACZ H A+ A <3|A| -4, A AW—DMKEEL |A+A| - |A| FIZEZER
B (RV4EEN 1 RS B8, & Z/pZ ¥, Vosper EHIGH, AW ANIETHRE A, B
W2 |A+B|l=|A|+|B| -1, B4 A5 B RWANALEMENEELY] (XEFELERTIE
B, Al =1 ).

BATXBEHZEY G & — ANl & VURBE G, ue 28 E normalized Haar
FZ (BPEE G FIEER 1), T G 2iEdEn), Rk e M ETF 73, TRMERHANESEE
A, B, Kneser & FLZATATU FAEE

u(A+ B) > min{u(A) + u(B), 1}.

FAVEAR S LIRANSE KFRAF Kneser A%F, 1R G CHHEY] PR B EEEH]. Lid
AEEX S OLE (B1 A, B A RN 5K), EEREHZIE B Kneser 441, 5555 LT
FRAZIS, B ug (A + B) < pg(A) +u(B) +6 I, X785 /N 6, A 145 #2530 e P 3 4
Y. TERURIXANE R T, AT N—A5E L.

EX 2.1 (Bohr 4). G 2 NJREE WU/REE, T =R/Z & 430, x : G > T 2 i&
s BRI T 2—NEXME. AR y 1) & G M—4 Bohr £. G LHIHA
Bohr & x; () 1 x;'(J) &F47 Bohr FWMREATE x1 = xo.

B 1,7 & T ERMANSEXIE H# L pr(D) +pr(J) < 1. BHEL, ur(I+J7) = ur(l) +
ur(J). Kneser &TH/MNskESHIEH (7] 7R, SN IKES AR Lok B T — 4831 10
X [H].
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EIE 2.2 (Kneser). G 2—ANEMNR#, ALBH G LYANEZTEE. ok us(A+B) =
uc(A) +ug(B), M T @EGHEH LB —/NKAE:

1. min{uc(A), ug(B)} = 0;

2. uG(A) +puc(B) =1;

3. A,B ZAAF4T Bohr %.

XA L RN RES A, B, AWz E st mEr 2. — R, et e A —

JE SR AAAE. PTERRE M E B, 7R IX BB SR I T e M IR AR S I S5 ), Bz
B/ RIEA AR, XA € B AT PR (8] 44 4.
EI 2.3 (Tao). ¥ THEZE >0, AAE >0 RATERL. G A—ANEFTNRH, A,B A
G LOAAEE, HE min{uc(A), ug(B)} > & B ug(A) + ug(B) <1 -e. 4 HMA

UG (A+B) < uc(A) + ug(B) +6,
IRABE—NELEHRES v:GC>T, ARBAAERNE ILJCT, #HL
pc(Aax™ () <e, pcBax ') <e.

Tao FYIRARIEBARIHT 1 RS 75 B L 70 Bt DURARRRAE S BT HIECOR, A 30 T, X HLIRAT]
JSE IR A AR G Y — a7 B R IE . XMWk B T &G {F#& M Chieu-Minh Tran % ¥
AR 17K J= B SR b i /NN /N 5K AR (R 2 A 2 g FL b — 2B SeT- AR BT DLZREE B/
ORI S, A GBI T L L3 [6].

IERR T

WER I R R H FANEXBE G 1 “4e30 AT, S TS A E
X, FAVSeH 0] R AN ZERE R ) . X — R RATTEE N R () BRI a5 R e B R R R
) 235 ) 200 1l e @ B R A R 26 1, SE BRI R B Gleason (3] #l Yamabe[9]. iX Bk
TR T 8 R DURBERIARA, >R H von Neumann EHE [10] B—AMREERTE L.
EIE 3.1 (von Neumann). ik G —ANEBEFNREF. sEFOSELETH G T
U, BE—ANENEFTH HCU, /% G/H=T

% H NEF3 BN G FEEM TR BATE W T HHEIESS)
1-H—->G5T 1.

I O 73 5, FAIA DR H .

NTNRRGNE, BAGAE A5 B 1E T¢ LR R AR/ NOY 7K. TRIENS
—p, IR H, BATAE A 5 B AE T L3 BA RN B, T 51 32 T
AT R, SIEAFE A B T UL, FEIX B 2.

SI3E 3.2. 18X 6 < min{ug(A), ug(B)}. 42 % max{ug(A), ug(B)} < 1/12, ML HLE G
HB R TH H, 44 G/H =T, B max{ug/u(nA), uc/u(xB)} < 1/4.

HERR G B3 20 2R T A, B £ G HIIIE RN, A TIERRXAER, ATHFEMET
REZLRAN) Dyson e-48 4. 5] FRAJIE A H B 7 55 5 FE.
5|18 3.3. |BiX A,B1,B, 7 G PHIEZTEE, HL

HG(A+B1) < pug(A) + ug(B1) + 61, pG(A+ Bs) < ug(A) + ug(Bz) + 09,
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B pg(BiNBy) >0, pg(B1UBy) <1—pug(A) -6, —6,. AR ABAA

HG(A+ (B1NB2)) < uG(A) + ug(B1 N Bz) + 61 + 02,
VAR

U (A+ (ByUB>5)) < ug(A) + ug(B1 U By) + 61 + 6-.
MWERR. VEREEMER x € G A VEA

Lasg, () + Larp, (X) = Lav(sing,y) (X) + Laviz,up,) (X),

T2
HG(A+B1) +uG(A+ Bz) > uG(A+ (B1 N Ba)) + ug(A+ (B U By)).

AR e B2 HATIAS 2

2uG(A) + uG(B1) + g (B2) + 61+ 62 2 (A + (B1 N By)) + g (A + (B U By)).

WA XA LM H Kneser ANZE, iy dlifSiIE. =
2. 3HITRR

FEIXT L, FAMBRBA R IEA S
1-H—-G5ST! -1,
H NEBIIEM TR, A, B NFA G LRSS, 2 min{uc(A), uc(B)} > &, H
HG(A+B) < puG(A) + ug(B) +6,

FIES g (mA) + pou(nB) < 1/2. IX—H AT DL 5] #E3. 245 2. VERERIN T RAHXAN G 2,
R uG(A), ue(B) < 1/12. XASBREI AT L@k #5851 233K A 2] R uc(A + B)
INF uG(A) + ug(B) +6, BAK A Bl A = A+g, FIRRZELRNES (A, B) TR
S, I REL g, M SIFES.2, AT AL AN (A +g) ZBER/DN. s2hr b, 3@id M Fubini
EHIRATAT AR H, AT TR B ¢ 815 pus (AN (A+g)) < uc(A)>

AT AT R EE AR A A, BE R, BT RIEERE, AT RS H
—AMEAFRFRIG O, BISEA A = B I XAMERMIEH CEES T EEIHEE. A
T G E B T T DG | B
SIFE 4.1. BiX 2ugu(nA) <1. A a A A R KGFEKE, B sup,capuu(ANaH). 4
vy = max{l,2a}. AR A &KAMAH

4ar
uc(A+A) > 7/1G/H(7TA((1/)/,(I]) +4uc (A,a/y1)-

TEUER 2 8, AV — FEH P AIE S FATER u M normalized Haar Wl
HAERITERRE. X T— M G PHIES A LE— [0,1] XIAIRF4E 1, TATH A,
KEKom A WA AHEKERT 1 MAgEES. HRITEAR T HIRATIL R4 4E, A1 218
EEH5EMFH H IENBERNZ. YT G PEEES X, BMH =X #8 X /£ G/H
Bivfs's

—MeRUL, HER A5 1o, A—ESf A MNA4ESEE Ay nlll. 31X AN A @] DLd i
—SEFRAE I LR FAR R e ik, PR AE AR ST E B L FRAT B FRA T 90O R B B TS A T 4R

AT RTZE H 5] 3417 7 R -
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IERR. X FERE x € (0,1], FAT4 Cr = (A+ A) N1 (TA(xa.01 + TA(xaa)) . IRAEE XAMES
th

HG(A+A) = puc(Co).
F—J7 1,

16 (Co) = g (Ciyy) —/Oy dug(Cy).

FATRA T A EL
UG (Crjy) 2 pe/a(TA (aly.a) + TA(a)y.a1)s

KRBT, By =10, EREXAAPILANY 0; XKEEAEM T H £ Kneser A4E3X).

[, i % AR, S TAER x,y e R7O W2 x <y < 1/y, ug(Cy) — ug(Cy) —
Tr2/bE

2xa (,UG/H(TFA(xa,a] + ﬂA(xa,a]) - ,UG/H(T(A(ya’a] + ﬂ-A(ya,a/])) .
S S IR HIP R, TRATE S

1

Y
1 (Co) = (A ajy.a) + TA(a)y.a]) — / 2ax A (TA (xa,a] ¥ TA(xa,a])-
0

7 B R gy, B ASTHRT B TRy

Y
1 (Co) = 2/ HGH(TA (xa,a] + TA(xa,a)) dax.
0

MR 2uG/(nA) < 1, BAE G/H FAEAH Kneser & #,

%
HG(Co) > 2/ (HG/a(TA (xa,a)) + MG /H(TA (xa,a])) dax.
0

FRRAS o338 0y, AT

1

4ar pY
G (Co) = 7HG/H(7TA(a/y,a]) - 4/ ax dpGa(mAxa,al)-
0

EEH] ducin (A (xa.a)) = — Al (MA@ xa)) BAK

1/y
/ X d/.lG/H (ﬂA(O,xa/]) = :uG(A(O,(Y/Y])
0
B H . .

FIEAERRAY, WRES A WEKAHEKENT 1/2, B2 pe(A+A) BRNEDR
dpg(A). Bk, EF2.3M%M uc(A+A) < 2uc(A) +6 & HIAVRBAI LI ZIE, B A ()%
KA KRR 1; 92br B9 34107 LG FRATT3E 2 1 g5 iz, FAT TR LAIERR A LT B
B YEA BE FREEEE 1.

BT HRN T BEITE, FATH d6(A) KEIR ug(A+A) —2u6(A).

SIF2 4.2. % 2uc/u(rA) <1 B d6(A) < ug(A). ML HE—ANTHNE A C G/H %1%
dG/u(A") < 206(A) H B pg(AantA’) <dg(A)/2.
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WERR. SIBE410 45 FRFAT, 1R b6 (A) < ug(A) A a, Bl A P KAF4ERKE, —E K
T 1/2. SRR 51 BR4 R T a0 FAE R A

Hc(A+A) > 2ugu(mA@a2,01) + 4106 (A,1/21)-

FATE A" = A 1)2,0). TERE]

bG(A) > 2[1(;/1.1(14/) + 2/,[(;(14(0’1/2]) - 2ﬂG(A(1/2,a]) = 2,[1(;(14 A 7T71A/),

AT ug(AanA) < bg(A)/2.

FE;?E, V=€ ﬂ_l(A' +A) = A(1/2,aj + A(l/g,a], BATH

uH(A +A") S ug(A+A) < 2ug(A) +d6(A) < 2ug/a(A") +2d6(A),

5 FEEEE. o

G B4 207 DU i) f8) LS540 B A B R RE b 25 AR =) F S ol DL /ZR e ) 45 460 5 B, 3RAT]

T UK ] B AL B3R T by T T B P2 3RA B AE 1998 SFEHAIERT [2]. i fi
HIEEANME T¢ ERIZR, AT 5E R T € #2389 E .
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FEARRFFF (specialization) HIZ51L.
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Zariski’s Main Theorem

1.1 Introduction

We first recall some conventions. In this note a variety is an integral separated scheme
of finite type over some field. Let X,Y be schemes, a birational map is a morphism f defined
on a nonempty open set U C X such that f induces an isomorphism from U to a nonempty
open set V Cc Y. Two varieties over a field k are birational if and only if their function fields

are isomorphic as extension fields of k.

Given a birational map f : X — Y(where X,Y are varieties over field k), we call a point
x fundamental if x lies outside the open set U where the birational map is defined. Let I'y
be the image of the graph morphism U — U XY and I" be the closure of Iy in X X Y. For
any closed set Z C X, its total transform under f is defined to be ps o p7!(Z) where p1, p2
are the projections of I' ¢ X XY to X and Y, respectively. See [6, V.5] for details.

The original form of the theorem was stated and proved by Zariski, as the following

Theorem 1.1 (Zariski’s main theorem, original form). Let f : X — Y be a birational
morphism between projective varieties and X is normal. Then if x € X is fundamental for

f, then the total transform f(x) is connected and of dimension at least 1.
In [2], it was stated in a form concerning the connectedness of the fibers of a birational
morphism by Grothendieck, as the consequence of the following lemma:

Lemma 1.2 (connectedness lemma). Let f : X — Y be a proper morphism of Noetherian
schemes. If f.Ox = Oy, then the fibers of f are connected.

EFE R BIEK, 2019 HECERI 20, HEFH: agitatobkc@mail.ustc.edu.cn.
FfEER: AT 2 B 7 HRA, 4 B 11 A% —BK, 5 B 19 BB kB, 5 H 27 HE%. Ffhgf: RRE.
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Theorem 1.3 (Zariski’s main theorem, connectedness form). Let f : X — Y be a proper
morphism of Noetherian integral schemes. IfY is normal and f is birational, then the fibers

of f are connected.

And using Lemma 1.2 we’ll get another result namely the Stein factorization to factor
a proper morphism into two simpler morphisms and study the property of fibers. By the

factorization we reach a slightly different conclusion.

Theorem 1.4 (Zariski’s main theorem). Let f : X = Y be a quasi-projective morphism. of
Noetherian schemes, and T be the points of X that are isolated in their fibers. Then T is

open and f|r factors as f = go f', where f’ is an open immersion and g is finite.

Finally, in [3], the theorem was generalized to a stronger form about the quasi-finite
morphisms. The proof is quite different from that of the previous versions, including hard

commutative algebra.

Theorem 1.5 (Zariski’s main theorem, final form). Let f : X — Y be a quasi-finite mor-
phism of Noetherian schemes, then f factors as f =g o f', where f’ is an open immersion

and g 1is finite.
1.2 Elementary Examples

In this section we consider some simple examples for Theorem 1.3, and try to give
a quite elementary proof in the case of projective curves. Notice that the morphisms of
projective varieties(or schemes, in general) are all proper, hence the proper condition is
automatically satisfied. In this section, all the varieties and schemes we considered are

projective over some field k.

Example 1.6. One important class of birational morphisms is the blow up of varieties ([6,
1.7, I1.7]). Take the most naive situation, the blow up of a projective curve C at a point x.
Let E be the strict preimage and

n:E—-C
is the canonical projection. We know that the fiber of 7 has more than 1 point only when x
is singular and the map = fits the condition of Theorem 1.3 if and only if C is a non-singular
curve, in which case 7 is just an isomorphism by the theory of blow up and has trivial fibers

which are of course connected.
Now consider C with singular points, for example the nodal curve
Y2Z =X*(X+Z)
in ]P’i. Since it only has one singular point [0 : 0 : 1], we can just consider the affine piece
y2 = x?(x + 1) and its blowing-up at O = (0,0). E is isomorphic to a quadratic curve,
with two points sent to O and 1-1 at other points. Write the point in the space A% x P!
by coordinate (x,y);[u : v], we can write the equation of E explicitly. In the affine piece
defined by v # 0, it is (u/v)?(x +1) — 1 = 0; in the piece u # 0, it is (v/u)?> —x -1 =0.
One can check the following straightforward consequences:
e E—717%(0) is open in E.
e (m.0g), is local ring, at any point x # O; or has 2 maximal ideals when x = O.

For the second claim, we compute directly by definition:

(m.0g)y = li_r)anE(U) = li_f>n0E(7T_1(U)) = O, 21 (x)
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when x # O or Og 4 ® Og, where {a, b} is the preimage of O.

These observations are special cases of the Propositions 1.11, 1.12, which claim that
¢ the points isolated in fibers form an open set

« the connected components of fiber 77 (y) correspond to the maximal ideals of (7.Ox)y.

O

Example 1.7. In the previous example, one can define a birational map 7 : C --> E by 7!,
at everywhere of C expect O. The total transform of O is just the two points in 771(0). C
is not normal and 7'(0) has 2 components. Readers can check this using the equation given

above. O

Define a curve to be an integral proper variety of dimension 1 here. It is easy to show
that a non-constant morphism between curves has fibers with finite points and we prove

now that it is in fact a finite morphism, as a special case of the general result 1.17.

Proposition 1.8. Let f : X — Y be a non-constant morphism of projective curves over
field k, and X is non-singular, then f is finite.

Proof. Take an affine open set V = Spec A C Y, then A is an integral domain with Frac(A) =
k(Y), the function field of Y. Let the preimage of V be U c X. Consider the integral closure B
of Ain k(X). Since k(X), k(Y) are both of transcendence degree 1 over k, k(X)/k(Y) is finite,
hence B is finite over A as module. Let U’ = Spec B be an affine variety of dimension 1, by
valuative criterion([6, I1.4]) we have a morphism j’ : U" — X extending ' = Speck(Y) — X.
Notice that U = f~1(V) implies U = X Xy V, hence we have morphism i : U’ — U. Since
f: U’ — V is finite, i is also finite([6, I11.4]). Finite morphism is closed, so i(U’) is closed in
U. The closed subset of U can only be finite points or U itself, but j'(n’) = nx = Spec k(X)
so the only possible case is i(U’) = U. By counting the size of fiber we have i is also injective,

hence U = U’ which implies f is finite. O

U,’\f
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Proposition 1.9. Let f : X — Y be a birational morphism of projective curves. IfY is

normal, then f is a 1-1 map.

Proof. Blow up the singularities of X we get 7 : X’ — X, which is also birational. Hence
fom: X" — Y is birational morphism of non-singular curves and hence an isomorphism.

Qur assertion follows. O

This is a baby version of 1.3.
1.3 Connectedness Theorem and Stein Factorization

In this section we use Lemma 1.2 to prove Theorem 1.3, 1.4 and some relevant results.

The proof of Lemma 1.2 will be postponed, as a corollary of the formal function theorem.

Proof of Theorem 1.3. By Lemma 1.2, we just need to verify f.Ox = Oy. By the normal
condition, Oy, is integrally closed in its fraction field k, which is just the fraction field of
(f:Ox)y, by the birational conditon. Therefore, (f.Ox), can only be Oy , as module over it.
So we get the desired equality. O

Remark 1.10. Using connectedness lemma one can also deduce a slightly stronger version
([7]):

Proposition 1.11. Let f : X — Y be proper surjective morphism of integral Noetherian
schemes, and Y is normal. Assume the generic fiber of f is geometrically connected, then f

has geometrically connected fibers.

When f birational, easy to see the generic fiber is geometrically connected. O

And by Lemma 1.2, we can derive the Stein factorization, using the relative spectrum
which we denote by Spec. (One can find the construction of it on [6, Exercise I11.5.17][18][17,
01LL])

Theorem 1.12 (Stein factorization). Let f : X — Y be a proper morphism of Noetherian

schemes, then f factors as f = go f', where f’ has connected fibers and g is finite.

Proof. We have natural factorization of f :
X — Spec (f.0x) =Y.

Denote %Y( f:Ox) by Z. From the property of Spec, Oz = f.Ox, hence the first morphism
S’ has connected fibers(to show the properness of f’, we claim that g is affine and hence
separated, now f is proper implies f’ proper). Finiteness of the second morphism g is from
the fact that f.Ox is a coherent Oy-module ([6, IL.5]). o
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Now we turn to the two properties mentioned in 1.1, and then prove Theorem 1.4. The
first one concerns the connected components of the fibers, which is straightforward by the

Stein factorization. We use the same notations in Theorem 1.12.

Proposition 1.13. There’s a 1-1 correspondence between the connected components of the
fiber f~1(y) and the mazimal ideals of (f.Ox)y.

Proof. From the factorization f = g o f’ in Theorem 1.12, the connected components of
f~1(y) are 1-1 with the points in g7*(y), via Z — f’(Z). But g is a finite map, hence points
in g7*(y) correspond to the maximal ideals of (g.0z), where the latter equals to (f.Ox),
by the construction of Z. O

In the following proposition we consider the points isolated in its fiber f=*(f(x)). Use

the notations as above.

Proposition 1.14. The subset T = {x € X : x isolated in its fiber} is open in X.

Proof. Same as above, one verifies that x isolated in fiber if and only if f/~*(f’(x)) = x,
therefore we only need to consider f’. So it is sufficient to deal with the case f = f’ has
connected fibers, f.Ox = Oy.

Assume x € T, f(x) = y. Take affine neighbourhood x € U = SpecB, y € V = SpecA,
f(U) c V. Now for f closed, f(X—-U) closed in Y, hence f(U) open in V. Since the principal
open sets {D(f) = SpecA; : f € A} form a basis of V, one can take Vy = Spec A; C f(U).
We have Uy = f~1(Vy) c U, Uy = Spec By. By f.Ox = Oy, f|u, is isomorphism, so Uy C T

which implies T is open. O

Notice that the result in the previous proposition can be strengthen.

Proposition 1.15. Assume f.Ox = Oy in the previous proposition, then f|r is an open

1TMMErsion.
Proof. Straightforward by definition of T and f,Ox = Oy. O

With the preparations above, we can prove Theorem 1.4 easily, which factors a quasi-
projective morphism into open immersion and finite morphism, when restrict it on open set
T defined before.

Proof of Theorem 1.4. By definition, f can be factored as

X—>Py—>Y.

The first morphism is open immersion so we only consider the second one. So we assume
f is projective (hence proper) below. Let f = g o f’ be the Stein factorization, Proposition

1.14 shows f’|7 is open immersion, so we get the conclusion. O

We know that an finite morphism has finite fibers, but the inverse is not true in general.
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Example 1.16. Consider X = A} — (0) = Speck[x,1/x], Y = A} = Speck[x], f: X =Y
is the inclusion. Obviously all fibers of f are finite, but it is not finite for k[x, 1/x] is not

finite as module over k[x]. O

However, quasi-finite indeed implies finite in most common cases, for example when
the morphism is projective. Using the Zariski’s main theorem 1.4 one can deduce a relation

between finite and quasi-finite morphism:

‘ quasi-finite+proper=finite.

(Recall that a finite type morphism f : X — Y is quasi-finite at x € X if Ox, is finite
over k(x), or equivalent with fiber f~'(f(x)) is finite, or x isolated in its fiber. ([5, 1.9]))

Theorem 1.17 (Chevalley). Let X,Y be Noetherian schemes, then morphism f: X — Y is
finite if and only if quasi-finite and proper.

Proof. The ‘only if’ part is easy: only need to show finite implies proper. Closedness is by
the going-down property of finite homomorphsim, separatedness is because affine morphisms

are separated.

Now we deduce the ‘if” part by Theorem 1.4. Notice T = X in this case so f” in the Stein

factorization is open immersion, hence finite. And g is also finite, therefore f is finite. 0O

Proposition 1.18. Let f : X — Y be a proper morphism, Y is locally Noetherian and the
fiber Xy, over y is finite(as set), then there exists open neighborhood V of y such that f is
finite when restricted to U = f~1(V).

Proof. Let T C X be the open set of all the points that isolated in fiber, then Z = f(X -T)
is closed in Y for f proper. For f~1(y) is finite all points are in U, hence y € Y —Z. Take open
VthatyeV cY-Z, U= f V), flu is quasi-finite hence finite by previous proposition. O

Remark 1.19. This proposition generalizes the so called generic finiteness which only deal

with the situation that y is a generic point (of some irreducible component). O

Now we can prove the original form Theorem 1.1, to see 1.3 is indeed a generalization.

Proof of Theorem 1.1. Sufficient to prove the statement for p7!(P), i.e. p7!(P) is con-
nected with dimension > 1. Notice that p; : ' — X is a birational projective morphism, we
can use our Theorem 1.3 to conclude that p;*(P) is connected. If it has dimension 0, by
the property of the dimension of fibers, one find open V contains P such that all points in
V has fiber dimension 0, hence by theorem 1.16 p; is finite when restricted to p7*(V). But
V is also normal, so p; is actually isomorphism when restricted to p7*(V). This indicates

the birational map can be defined on V, which contradicts with P is fundamental. O

We end the section with another application, considering how a morphism behaves like
isomorphism become isomorphism.
Proposition 1.20. Let f be an birational quasi-finite morphism between Noetherian integral

schemes. Suppose Y is normal and f is proper, then f is isomorphism.
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Proof. By Theorem 1.4, f is an open immersion. And f is also surjective for f has closed

image by properness, so the image is just Y for Y is integral. O

Corollary 1.21. Let f: X — Y be a birational morphism between projective curves with Y

non-singular. If f is not trivial (i.e. image is a single point) then f is an isomorphism.
The Formal Theory

2.1 Examples for the Completion

One main defect of the Zariski topology is that it is too coarse and there’re no enough

open sets to detect the topological information of schemes.

Example 2.1.

e The Zariski topology on curve is the cofinite topology which has very big open sets.

e The cohomology of affine schemes at order > 0 is 0. However different affine schemes
surely have very different structures. So the cohomology (in Zariski topology) can’t
reflect the geometrical information well.

o Consider the curve C : y? = x?(x + 1), and assume the base field is the complex number
C. At the point O = (0,0) it has two tangent lines y = +x. Visually if we restrict C — O
to a sufficient small neighborhood U of O, it will have 2 connected components(it is

reasonable to expect C to be ‘approximated’ by y = £x well near O).
So one may expect that the local ring of the coordinate ring A = C[x, y]/(y? — x3 — x?)

at O can be written as direct product of two rings, representing the two parts of the
local functions on the two components. But it is clear the localization of an integral
domain is again integral domain, hence not the product of two rings. This phenomenon
reveals the defection of Zariski topology again: there’re no enough opens so that one

can’t find a neighborhood U of O, such that U — O splits into two components. O

Spec K[z, )/ (s " —2%) C
Spec K[z, y] is irreducible;

its preimage
Spec K[z, ]|/ (y*—a*—2?)
C Spec K[z, y]] is not.

So we will naturally expect some method to strengthen the Zariski topology to get rid
of the contradictions with intuition. The last example above leads to the method we use

here, i.e. the so called completion.

Example 2.2. Consider the last case in Example 2.1. In analytic case we study functions

by its power series expansion locally, so we try to formally repeat the procedure here. In
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the ring C[[x, y]], if we set

1 1
u=1+§x+§x2+---,thenu2=1+x,

1 1
ie. V1+x:1+§x+§x2+-..,
hence A = C[[x,y11/(y? = x* — x?) will have the desired decomposition

A =C[lx,y11/(y+u)(y = u) = ClLx, y]1/(y +u) ® C[[x, y]1/(y = w).

In fact, the A above is obtained by an algebraic procedure named completion. In the

general setting, for ring A and ideal I, the I-adic completion is defined to be the limit

A=1limA/I*.
(—
k=1
Here we take I to be the maximal ideal at O, i.e. the maximal ideal (x,y). O

In the previous discussion, we find to detect the geometry near a point, the completion
indeed gives the correct information. Behind this example hides our main idea: rather than
changing the topology of underlying space, we ‘thickening’ the functions over the space by

completion.

Example 2.3. Let (A, m) be a Noetherian local ring, M be finite generated module over
A. The local criterion of flatness claims that if M/m*M are flat over A/m* for all k > 0,
then M is flat over A ([8]). That is to say, when the all thickened fibers(over A/mk) are flat,
then M is flat. O

2.2 The Formal Function Theorem

In most of our situations, when considering morphism X — Y, we can firstly take affine
open subsets of ¥ and reduce to the situation that Y is affine. So we firstly assume the

target is affine.

Let A be a Noetherian ring, I an ideal of A, scheme X proper over Spec A, ¥ a coherent
sheaf on X. Let f : X — Spec A be the structure morphism, we write IF = (f*I™)F; the
product of an ideal sheaf and a coherent sheaf defines naturally. Now we have a natural

morphism(in fact, this is what we called ‘base change’ morphism)
H" (X, F)/I"H"(X,F) = H" (X, F/I*F)

for any k > 0. And it is easy to see both side become a inverse system on the index k, hence

take the inverse limit we get a canonical homomorphism
H"(X,F)" — lim H"(X, FI15F).

The following theorem indicates it is an isomorphism.

Theorem 2.4 (formal function theorem). Notations as above. We have
H"(X, )" — lim H"(X, F/1'F)

by the natural homomorphism constructed above.
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We'll give a sketch of the proof in the section 2.5. For details, see [4, 2.5][2, 4.1].

Remark 2.5.
(i) Put n =0 we get
[(X.0x) — lim (X, Ox/I"Ox).

The left side is the I-adic completion of the global sections(or ‘holomorphic functions’)
of structure sheaf as A-module, and the right side is just the ‘power series’ or ‘formal
function’. That’s the meaning of the name ‘formal function theorem’.

(ii) This theorem says we get the same thing when completing the cohomology in two ways.
Like the discussion in Section 2.1, take completion is somehow extending algebraic
functions to analytic functions. Actually we will see in Section 2.4 that they all equals
to H" ()/(\ , 5"\’) O

We restate the theorem in a global form, using higher direct image instead of cohomol-
ogy.
Lemma 2.6. Assume X be a Noetherian scheme with morphism f : X — Spec A, then for

quasi-coherent sheaf F on X, we have
R'f.F ~H"(X,¥)".
Proof. See [6, II1.8.5]. o

Theorem 2.7. Let f : X — Y be a proper morphism of Noetherian schemes, F is a coherent

sheaf on X, I is coherent ideal sheaf of Oy. Then we have canonical isomorphism
L 1: n k pn = : n k
u: m(R TFIIT*R"£.F) — anR f(FIIT5F).

Proof. Notice on any topological space the inverse limit of sheaf is still a sheaf, and taking
section commutes with taking inverse limit ([17, 009E]).
Firstly we have the canonical morphism liil(R”f*T/I"R"f*T) — lln R"f.(F/IT*F). By the

previous lemma and Theorem 2.4,
: n k pn : n k
Im(R"f,F/T*R" f,.F)(U) - im R" f.(F /| T*F)(U)

is an isomorphism for affine open U. Now the assertion follows by considering the kernel
and cokernel of u. All sections over affine opens are 0, hence each stalk of them are 0, i.e.

they are identical 0. O

Remark 2.8. We can interpret Theorem 2.7 as a ‘base change theorem’, since the canonical
isomorphic morphism is just a limit of base change morphism. For étale cohomology and
torsion sheaves, base change is exactly an isomorphism when requiring the proper condition,
known as ‘proper base change theorem’ But in coherent and Zariski cohomology settings, it
is not an isomorphism in general. The solution is to pass to the ‘formal fiber’, as in theorem
2.4 and 2.7. O

Now we apply the theorem to a special case. Let f: X — Y be a proper morphism of
Noetherian schemes, ¥ is a coherent sheaf on X, y a point on Y. X,, = X Xy Spec(Oy /m’;’y)
be thickened fibers, and ¥; is the pullback of F along the canonical morphism X; — X.
Applying Theorem 2.7 in the case 7 = my , we get
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Theorem 2.9. Notations as above. We have a natural isomorphism
((R"£.5),)" > lim H" (X,., 7).
where the completion is along the mazimal ideal my .

Proof. Let iy : Spec(()y,y/m’;’y) =Y, ji: Xk > X, fi + Xi& > Spec(Oy,,/my ) be the

canonical morphisms.

X, — SpecOy y/my |

2 |

x —L SpecOy
[
f
X ——7Y
Notice that
(R"f.F), = H°(Spec Oy ,,,i*(R" £.F))
~ H"(Spec Oy ,, (R" f/)(j*F))(flat base change, Lemma 2.10)
~ H"(X', j*F)(Leray spectral sequence for f”),

and
H' (X', j*F)/my H" (X', j*F) ~ H'(X', j*F) ®o,, Oy.y/my , = H" (X, Fi)
by flat base change again. Hence we have
(R"£.F),)" = L H" (X', j°F) [ ,H" (X, j*F)
o~ linH (X, 7)) (Theorem 2.4)
= lim H" (X, 7).
O

Lemma 2.10 (flat base change). Let f : X — S be a quasi-compact separated morphism

and g : 8" — § be flat morphism, X' = X Xs§'. f : X' = §, g : X’ —> X be the natural

morphisms. ¥ is a quasi-coherent sheaf on X. Then we have canonical isomorphism
§RLT = (R'f)g" T

Proof. Reduce to affine case, the flatness condition implies f* is locally exact. See [4,
2.4.10). O

As an application of the theorem, we give the promised proof of the connectedness

lemma.

Proof of the connectedness lemma. Let f : X — Y be a proper morphism between

Noetherian schemes. Take any point y on Y, we show the fiber X, is connected.

If X, is not connected, say it can be written as X, = A ] B where A, B are closed non-
empty sets in X,, then I'(X,, Ox,) =TI'(A,Ox,) ®I'(B,0x,). Put ¥ = Ox, n = 0 in Theorem
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2.9, we have .
O = ((£.0x),)" = lim (X, Ox,)

= im(I'(4,0x,) ® (B, 0x,))
= im (4, Ox,) ® im (B, Ox,).

Since A, B are non-empty, the direct summands in the right side are not 0. But the
left hand side is the completion of a local ring with respect to its maximal ideal, hence still
a local ring with maximal ideal my ,. A local ring can’t be written as direct sum of two

non-trivial rings (consider the maximal ideal of these rings), so that’s a contradiction. O

Remark 2.11.

(i) In fact, the result can be strengthened to f,Ox = Oy implies the geometric fibers are
connected, without any other efforts.

(ii) We can understand the condition f.Ox = Oy as following: by definition, f.Ox(U) =
Ox(f~1(U)) so it is the ‘functions on the preimage’ or ‘functions on the fiber’ when U
be a point. As an Oy module, it should be ‘bigger’ than Oy so when f.Ox = Oy, there’re
very few functions on the fiber. That indicates the fiber has some property relates with
compactness (as we have no non-constant global function on compact complex manifold
or projective variety). For example, when X = A} XA, = A, Y = A} and f be the first
projection, the condition doesn’t hold but for X = A}( X ]P’,lc, Y, f as above, the condition
holds: in the second case, the fibers are projective, hence they have no non-constant
global function. Generalize the example above a little, one can show that for projective
morphism f : X — Y between Noetherian schemes, if all fiber are connected then
f *Ox = Oy-

(iii) However, connectedness does not imply f.Ox = Oy in general. Put X =Y = SpecA, A
be a character p perfect ring(for example, A = F, is the finite field with p elements).
Denote the Frobenius a — a” by ¢ : A > A, f : X — X is the morphism induced by
¢. Now f.Ox = (AP))" # Oy, where AP is the ‘Frobenius twisted’ A. As an A-module
it has the structure of Abelian group same as A, with an action of A: a.x = a’x where
a€A xe AP and (AP)" is the coherent sheaf associated to AP ([Ha77, IL5]).
But f is finite hence proper, and it is a homeomorphism on the underlying topological
space of X so all the fibers are connected.

(iv) The example above suggests that we can get rid of the chaos caused by positive character
by requiring the geometric fibers to be connected and reduced. We leave it to the
readers to spell out the explicit statement and the proof. The idea is arguing by Stein

factorization, as usual. O

Come back to Theorem 2.9 again. The right hand side is the limit of cohomology of
fibers; by the result on cohomology dimension of Zariski cohomology ([6, II1.2.10]), all co-

homology vanish in degrees higher than d = max, dim X, so we have the following corollary

Corollary 2.12. Let f : X — Y be a proper morphism of Noetherian schemes, ¥ is a
coherent sheaf on X, d defined as above. Then for anyi > d,

R f.F =0.

In particular, when f is quasi-finite(for example, étale), f. is exact.
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Remark 2.13. In this case, f* = f'. See [5, 8.4] i

2.3 Formal Schemes

In Theorem 2.9 we have considered a direct system of schemes {X;}, with same un-
derlying spaces and thickened structure sheaves. Now we consider the general setting, to

assume the underlying space be any closed set cut out by some ideal sheaf 1.

Definition 2.14. Let X be a Noetherian scheme and I a coherent ideal sheaf. The formal
completion of X with respect to I is defined by the ringed space ()?, Oz) where

X = Supp(Ox/I), Og =1im Ox/T*.
We have a canonical morphism of ringed spaces
(i,i%) : (X,05) = (X, 0x).

And in fact it is a morphism of locally ringed space (][4, 1.5.12]).
Let X, be the closed subscheme of X cut out by 7", we have

in: X = X, inm : Xo — Xo(n < m),

Zfl : (Xn» OXn) - (5(\’ 0)?)

Summarised in the following commutative diagram.

(X, Ox,) — (X,0x)

Ry

For Ox-module ¥, define the formal completion
T k e T
F = lm(F/T4)g = lm i, 7
Comparing with the canonical morphisms # — i,.i; %, we get a canonical morphism

F i, F.

Remark 2.15. For two coherent ideal sheaves 7 and 7’ which define the same closed subset,
one find they actually define the same completion of X and ¥. Without loss of generality,
let 7 be the biggest ideal sheaf defining the closed set Xy, then Ox/7 is reduced. For any
other ideal sheaf I’ defining X,, locally 7 will be the radical of 7', so (using the Noetherian

condition) there exists some n such that
I'crcri™.

Therefore the completions defined by 7 and I’ are the same, that is, the procedure of

taking completion only depends on the closed set one choose. O
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Consider an inverse system of coherent sheaves (%, ¢m,) where ¥, is coherent Oy, -
module and @,,,: Fn = InmFn for any n < m satisfies that
® Onn = Id and imk*(‘ipmn) O Qkm = Pkn fOI‘ any n <m&< k7

* Qmn induces i), Fn = F, for any n < m.

An Og-module § is called coherent if there exists such an inverse system that
& = limi,.F,.

Given a coherent Ox-module ¥, we naturally get an inverse system (i} F, ¢.un), hence
F = &1 Insdy F

is a coherent Og-module. Coherent Og-module of such form is called algebraizable, that is,

it can be induced by a Ox-module via its ‘restrictions’ on X,,.

Proposition 2.16. An Og-module § is coherent if each ¥, = ’l\;% is coherent Ox,-module

and the naturally defined inverse system gives
§ = lmF,.
Proposition 2.17. Notations as above. We have
Homo (F,G) =~ Homo, (F,G)",
Hom()}?(g’ (6) = lﬁlHOm()X" (7:}1’ gn)
Proof. [4,1.5.13, 1.5.19]. O

2.4 Comparison Theorems

We have mentioned before that X is some kind of ‘analytification’, now let’s make it
clearer. For smooth variety X over C, consider the analytic space X“" consisting of the
closed points of X and with the usual Euclidean topology to be a complex manifold. X*"
has the structure of ringed space with the sheaf of analytic functions O“*. We have natural
inclusion

i X" - X.

Serre’s GAGA principles ([13]) claim that
Theorem 2.18. The functor

i : Coh(X) — Coh(X")
is an equivalence of categories, and induces isomorphism on cohomology
Hn(X’ 7:’) ;> Hn(Xan’ 7_~an).

Where ¥ = i*F, Coh(X) is the category of coherent sheaves over X. It is clear that
X plays the role of X" in our case, and we have similar comparison theorems here called

formal GAGA.

Consider a scheme X proper over Spec A where A is Noetherian. Assume [ is an ideal
of A, ¥ is a coherent Ox-module, coherent ideal sheaf I = IOy is over Ox. Let F and X
be the completions along I, F = /I *F be the pullback of ¥ to the closed subscheme X,

defined by 7*. Write i : X — X for the canonical morphism in this and the next section.
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Theorem 2.19. Notations as above. For any n, we have natural isomorphism
H'(R.F) > lim H" (X, 7).
We will also sketch the proof in section 2.5.

Remark 2.20. By the formal function theorem, we have

H' (X, F) — H"(X,F)".

Actually we have a comparison theorem just same as the complex case ([2, 5.1.4]).
Theorem 2.21. Notations as above. Assume A is complete with respect to I, then the
functor

i* : Coh(X) — Coh(X),
F s F
s an equivalence of categories.
This is a consequence of the existence theorem Theorem 2.22 and Theorem 2.23.
2.5 Proof of 2.4 and 2.19
In this section, we fix integer n > 0 and write H"(¥) for H"(X, ), for simplicity. Put

Fx = F/I*F. By the long exact sequence we have exact sequence
HY(IKF) = H'(F) — H'(F2) = H" (I'F) - H'™L(F).

Set R, = Im(H"(I*F) — H"(F)), Qn = Im(H"(F) — H™'(I*F)) = Ker(H"' (I*F) —

H"™1'(F)). Hence there’s exact sequence
0— H"(F)/Ry = H"(Fi) > Qn — 0.
By the left exactness of %iLn, we have
0 = lim H"(F)/R, = lim H"(F3) > lim 0,.

Therefore, it suffices to show the following
e Let g @n — O, be the morphisms of the projective system, then there exists some

N such that g, ..y = 0 for all n. This implies @Qn =0.
e The projective system R,, defines the same topology of H"(F) with I"H"(F).

Hence the surjections

H"(F)/T°H"(F) — H"(F)/R«
define an isomorphism
n AT : n
H'(F)" — mH (F)/Rx.
Combining above two points and the exact sequence, Theorem 2.4 was proved. For
H"(X, %), we have
H (X’ 7:) =H (X,mﬁ) =H (Xyl* mﬁ) =H (Xs m(lk)*ﬁ)

For the projective system (H"(Fy),Um.n), we claim that there exists N such that for all
m and m’ > m+ N, Imu,, ,, = Imu,, ;,.y. This implies H" (X, yl_n(ik)*?-'k) = anH"(X, (i)« Fx)
([2, Ch.0, 13.3.1]), and Theorem 2.19 follows.
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2.6 Grothendieck’s Existence Theorem

We state the existence theorem now. In short, the theorem says if the base scheme is

complete, then every inverse system of coherent sheaves is algebraizable.

Theorem 2.22. Let A be a Noetherian ring complete with respect to ideal I, X is a scheme
proper over Spec A, I = I"Ox is a coherent ideal sheaf over X and X is the completion along
I. Then for any coherent Og-module &, there exists unique coherent Ox-module ¥ up to

isomorphism such that § =~ %, where the completion is taken along I .

Theorem 2.23. Let A be a Noetherian ring complete with respect to ideal I, Ag = A/,
S =SpecA, S, =SpecA/I". Scheme X is proper over S, with X,, = X Xs S,. Then

Hom(X,Y) — lim Hom(X,, Y,,).
h

Remark 2.24. We shall see a typical application of the existence theorem in the following

Theorem 3.3. For the proof, one can refer to [4][7][2]. ]
Application to Fundamental Groups

Recall that a local homomorphism ¢ : A — B of local rings (A, m) and (B,n) is
unramified if mB = n and A/m C B/n is a separable extension; is étale if it is unramifield and
flat. A morphism f : X — Y is étale at x € X if the induced homomorphism Oy fx) — Ox «
is étale; f is étale if it is étale at all x € X. We call a finite étale morphism an étale covering.

See [5, 2.2, 2.3][10, 1] for other characterizations and properties.
For the definition and basic properties of étale fundamental group, see [5][10][14]. As

the usual notation, we use m1(X,a) for the fundamental group of scheme X(where a is a
fixed geometric point of X), mo(X) for the set of all connected components of X, Et(X) for

the category of étale covering of X whose objects are finite étale morphisms to X.

Consider scheme X proper over S = Spec A, where A be a Noetherian complete (or gen-
erally, Henselian) local ring. Let the closed and generic points of S be s and g, respectively,
and 5, 7 be the corresponding geometric points. It is an algebraic analog of the following
geometric model: X is a variety over C, § =D is the unit disc in C, f : X — § is surjective
and proper(that is, the preimage of compact set is compact). The point 0 corresponds with
s, and D — 0 corresponds with 7. When f is smooth (or a submersion, in the language of
manifolds), Ehresmann’s lemma states that for some neighborhood U of 0, Xy = f~1(U) is
diffeomorphic with U x X, where X, = f71(0) is the fiber over 0. Therefore, when we take
sufficient small ball U containing 0, geometric properties(for example mg, 71, H",---) of Xy

and Xy should be similar.

So we may consider corresponding results for algebraic cases. In this section we compare
the my and 71 of X and its special fiber X;. The following Theorem 3.1 and 3.2 will be used in
the proof of proper base change theorem of étale cohomology ([5][15]). As for the comparison
of H"(X) and H"(X,), the readers can refer to the discussions of local acyclicity and smooth
base change in [5, 7.6, 7.7][16, Chapitre 1].

Theorem 3.1. Let f : X — S = Spec A be a proper morphism, A be a Noetherian Henselian

local ring, and s is the closed point of S. Then the natural map

7o (Xs) = 7o (X)
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1s bijective.

Proof. Let X iR S’ — § be the Stein factorization. Since §’ is finite over S, we have §’
also affine, S’ = Spec A’. By the property of Henselian local ring ([10][5]), A’ = [1; A; is finite
product of local A-algebras for A’ is finite over A. Denote Spec A; by §; with closed point
si, Xi = X Xg S;. Now S =[] S; hence X =[] X;. We show X; are exactly the components of
X.

Let Y be a connected component of X;. For f’ proper, f'(¥Y) must be closed in §” hence
containing the closed point. Hence ¥ must intersect with the special fiber of X; over S;, thus
contains the special fiber since it is connected by 1.12. Therefore, Y is the only component
of X; i.e. X; connected. For s Xg 8§’ = [[s;, X; correspond to the connected components of
X; by

Xi = (Xi)s,-

O

Theorem 3.2. Let f : X — S = Spec A be a proper morphism, where A is a Noetherian
complete local ring, S has closed point s. Then for any geometric point X of Xy, the natural
map

71 (X, X) = m(X,X)
18 am isomorphism.

We deal with the following general case which obviously generalizes Theorem 3.2.

Theorem 3.3. Let A be a Noetherian ring complete with respect to ideal 1, Ag = A/,
S = Spec A, Sg = Spec Ag. Scheme X is proper over S, with Xo = X Xg Sg. Then we have
equivalence of category

Et(X) = Et(Xp)
by pullbacking the étale covering:

Y'—)YXXXO.

Proof. Assume S, = Spec A/I" be the thickenings of Sy of higher order, X, = X X5 §,, be
the pullback to S,,.
¢ Firstly we show the functor is fully faithful, i.e.

Hom(Y,Y’) = Hom(Yy, Yp),

where Yy =Y Xg So, Y] =Y’ Xs So, Y,Y’ are objects in Et(X). That’s by the Theorem
2.23 and the following lemma.
Lemma 3.4. Let X be a scheme, Xy be the closed subscheme with same underlying

space with X. Then
Y - Y xx Xo

defines the equivalence of category
Et(X) =~ Et(Xy).

Proof. See [5, 2.3.12]. o
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e Now we show the functor is essentially surjective. The idea is once have an étale
covering Yy of Xy, by Lemma 3.4 one find a compatible series of étale covers of X,,, then
using the existence theorem to pass it to étale covering of X.

Let fy : Yo — Xo be an étale covering. By the above lemma we can find étale coverings
fo Y, — X, s.t.

Yn = Yn+1 XX,

n+1

X,.

And f, are proper morphisms for fj is proper. But étale morphism is quasi-finite, hence
/. are finite by Theorem 1.16.

We sheafify the schemes Y, using Spec. Let A, = f,.Oy, be a coherent sheaf of Ox,-
algebra (for finiteness), so Y, = %Xnﬂ”' By Y, =Y, Xx... X,,

n+l
ﬂn = ﬂn+1 ®0Xn+1 OX,, .
Now use Grothendieck’s existence theorem to obtain coherent Ox-module A such that
ﬂn =A ®0x Oxn .

And the morphisms defining the Oy, algebra structures can be also ‘algebraized’ by
morphisms of Ox-module, hence A also have compatible Ox-algebra structure. Now it

is sufficient to show

Specxﬂ - X

is étale. Only need to check the closed points. Let x be any closed point on X, for X is
proper over S, its image s in § is also closed point. We use the following criterion.
Lemma 3.5. Assume k be a field, a finite dimensional k-algebra A is étale over k if
and only if it is a finite direct product of separable extensions of k.

So Ay ® k(x) is a finite direct product of separable extension of «(x), where k(x) is the
residue field at x. By Ay = A ® Oy, we have A ® «(x) = Ap @ k(x). If we can show

A is locally free, this can be passed to A. Therefore Specxﬂ — X is an étale covering

inducing fy, which implies the functor is essentially surjective.

e We know for modules projective is equivalent to locally free, hence it suffices to show
the functor Homoe, (A, —) is exact.
Notice that the functor

G—G

is exact and faithful, where the completion is respect to the coherent ideal sheaf I =

I"Ox. So we pass to limit to using the properties of A,. By 2.17 and 2.19,
Homo, (A, G)" = Homo (A, G) = lim Homo,, (A, Gu),

where X is the completion along I, G, is the pullback to X,,.

By the definition of A, they are all locally free. To show Homo, (A, G,) is exact for
G we only need to check the stalks, hence only need to check on opens where (A, is free,

and our assertion follows. m]

Remark 3.6. Theorem 3.2 is still true when only assuming A is Noetherian Henselian local

ring, using Artin’s approximation theorem. O
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For a proper morphism f : X — Y with connected geometric fibers and points s, n € Y
such that s € {77_} (we call s the specialization of n7), we consider the relation between mq (X;)
and 71(X,,). After some reduction, we can assume Y is Henselian local ring with s =5 (i.e.
with algebraic closed residue field at s) and s, n be the closed point and generic point as

above. Let a, b be geometric points of X5 and Xs;, respectively. One have composition
sp ﬂ-l(Xﬁ7 b) - ﬂl(Xa b) - 7T1(X,(1) - ﬂl(Xs‘aa),

where the first map is natural map, the second is a chosen isomorphism, the third is the

isomorphism in 3.2. The map sp is called the specialization map.

Xp — X +—— X,

R

> Y < K

Theorem 3.7. Notations as above. If f is flat with geometrically reduced fibers, then the

map sp 1s surjective.

Proof. 1t is sufficient to show that for connected étale cover g : Z — S, Zz is connected.
By property of étale covering and for S affine, Z is also proper flat over S with geometrically
reduced fibers, and by Theorem 3.1 the special fiber Z; is connected. Therefore, H(Z,, 0z,)
is an Artinian local k-algebra and because k = k the residue field of H°(Z,,0,) is also k.
But we also have Z is reduced, hence H°(Z,, 0z, ) = k in fact.

Now in order to show the connectedness of geometric fiber over 7, it suffices to show
g+0z = Os by connectedness lemma 1.2. By flat base change 2.10, the base change morphism
2.0,k — H°(Z,;,0;) = k is isomorphism, so using Nakayama’s lemma we have g.0 = Os,

as desired. m]

In general, if p is the characteristic of the residue field of the closed point, we should
consider the ‘prime-to-p’ quotient of the fundamental group to get rid of the wildly ramified

case.

Example 3.8. Consider the naive example X = Y = SpecZ,, then X; = SpecF, and
X, = SpecQ,, X5 = Spec Q. We have ﬂi”)(Xﬁ) = Gal(Qy/QY) = [lesp Ze, ngp)(Xs) =

_ (p)
(Gal(Fp /IF‘,,)) = sy Ze-! 0

We have the following specialization theorem:

Theorem 3.9. Let f: X — Y be a smooth proper morphism of locally Noetherian schemes,
with connected geometric fibers. Let s, n €Y, s € m, p be the characteristic of the residue
field at s.

e If p=0, then sp is an isomorphism:
7T1(Xﬁ, b) ;> 7T1(X§, a).

e If p >0, then sp induces an isomorphism on the largest prime to p quotient of funda-
mental groups

7P (Xo, b) — 7P (X5, a).

1Q;’,’ is the maximal unramified extension of Q, and Qj; is the maximal tamely ramified extension.
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We will not prove this theorem here, since it needs some deep results like Abhyankar’s

lemma and Nagata-Zariski purity. One can refer [14, X].
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TRAP UL, TERAS IR PR, XA 2784 N, BN T —E Rt &, B ar
AL JEH, RS AR, XA LR SPT M3, 5 EAETERTIE ¢ Hooft [,
R 2 7 EAAETCRERR . ToPiFE I SR B B AR It 2 B R k. b e HL it
R e gt Lt fs U (1) SRR IR 8] S AR v Ry, Ho 5t F AR o B e
A 3 HL L.

W ER 2 SORECS AR B AR A R AR RE M o (B RS BHI PE R, T LA e —
HIERERR, IR A /RAARE B B RG —AE) iTUH d+ 1 4R s Tk, MR
A-S AL R TN F. ARTERATHR, XAHRAERR AL, X TAE—A d 4EFRIE
M4, F(MY) B4EECN 1, IERIZ R FON T8, KEGR RN 1 4k 5o (1) 0T ik AL
AR, R Picard B —FF. SR, AT UL, SPT 3 &A1 )7 7E T8 28]
AT, PR H B B TR d -1 4R, Bl N9 = oM9 BIER. REeE
YFRSEPR, (HR R A58 A-S AFRIHESE.

—FiEHE ST T B 30 B B 73518 (extended field theory, ExFT)[16][2]. T&ATI5EM d-1
YR 0 A, IRRRC L AR, d ERERIZARE d — 1 B Z A, FE, d+1 4
MR d BERIEZ AR, XKESAREI “SHOEH” | ZF, —DNEARNELZS
AW E, 3 HE SR EFIRIE N R T ROZ R a4 8. T, EAE, FAT
FORTEM R S R, FRATTE d — 1 4E3R0E LIER F P R0Z 2 —Fr 2— [ st
[23].

PRTF i, EE A REAEA S RTF ExFT 4077, nlab FAEE G IFE AN, S H [24]. &
I 53— g\ ExFT B3I, FoA10T LAAk S0 — 1.

SRS R ELHE T
AT — N4 E AT Ward 152 [11]. & d+ 1 4i103718, HAFES
BRBE G, W R R AR SEE T v, 1
0" =0 (4.1)
Bl G = U(1) BTG, RN j# = (p, )0, = (8, V), I
dp+V =0 (4.2)

BN R 5K 2 g spAE T R, Herh p = jO NTFIIERE, 7 BRI, dhaHh mp,
ST AT ATHE
Q0= / jOd%x (4.3)
z

SERTE A TR — BT m BB T 2D me? WIREE L, XA AR A R, AR T A i
0 TS BLIFR A e
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ERNELHSER

Kl 1.3: BEEE 5[ H (7]

TEPER A — AR R R ZI IR L, BE <7 a7 [ A2 Bl T AR AR & . O T MR — N IX A
B, JAVRIE, MahER S S ER. B L, = xpy — ypy, WATHEXN 5T [x, p,] =
. py] =1, BB ST [x,5] = [pa py] =[x, py] = [y, p2] = 0. W [L;,x] =1y, [L.,y] = —ix.
BATFHMEE— TG 2 BN x,y AR

X cosf —sind| [x b -y
- | = +6 ,0 -0 (4.4)
y sinf  cosf | \y y X

TER S TN AT BLS g

i[L., x)] (4.5)

BRlt, JATYE, MAEhE L, BT 58 2 BREE). XA EB AT D BRI, e bR
WV 5 B P00 5 BE B RROL: 45 8 — S ST ] ARG AR R R AR 4. IXAS R SEAE T L]
FTESE AL R AR, T sl E s A sl i e &3 BT, JATA HERIT

R, i ¢ R ERT, 0 RFEAXRIER) SRR FAT, A WR

[0.¢] =iq¢ (4.6)

AR ¢ WA g, A RKPZRBE T LI ¢ — 99, Kb 0 & —DMEHRESH

THE RS E RN —ANREE I 8] ¢ 105 8, Eean O A S g AE— NS5
T _ B S AR, TS T — NS, SE RN T —RRRR S (B Q0 A,
B IRATH I ST 5 T ) JR el AR Ao X S S I T IS Ak, A A D — S X AR AR e, S T
B — M RYEECN 1 T8, AR BE, 3RA TR I S RN WEEE (domain wall).

W BE I AN 44 IR TR SOW BRI 7T, WK 3, 10 H7 Sk Ak (Bl A e ) mk (F)
N +1(-1), M2 W BE R i e R & s — —s. XN B EAE], ATHISE4E, 82 W EE
& 1-1=0 4, M—L . ER _ERERIFIRaL, (HRE R mERE A R A B A AR /DN,
A LABEEANTE, B FRATT E TR i i AT5 98 2 BGSZ ).

PA_ESRAE SRR AR IR A 18, W RRIX — MRS AE S R 7. AT PTE =B e
HXFRE (higher-form symmetry) A [17].

il 4.1. FEAHCHEAHERE L =-1FAxF, £F F —A UQ) L0098 F 2.5
X, F=dA, £+ A A% I MK, FEWLTEHR A > A+, £F 2 AF 1-HX, &
B F AR, BBERERAAE. AMXHARA AN ER, BAHHE LT E
holonomy (432 L1 Wilson loop)

oA oif,Auif 1 (4.7)

KAET T, BEAMNFE, FEEHRZTRAT TN ZG. Bk, IARZAEET, dL
— AT, HEBRAUTRE —AMMFE, A AR 1B X A, RMNERARZA 17 X3t



(BN o g — ) Wi BN FR S $ 4T 137

AR, CE CFRIAR” J=*F 22— 2- WX, mAZ [-HX. FEGZAEA
d*xJ=0 (4.8)

XHEER Bianchi BF X, CHTFEFTAAEEXEA—ANFIHELET, RS XE—A 2%
FiRHE . .

=— | xJ=— [ F 4.9

0-5- [ (19)

2 Js
(B—RET 2 RA Tk Q A ¥4) TWIFREBTH, A F 4. 1-H XA EAE
—ANBERA 2 WTFET LR T AR E R, —f, n— HAMARBAR KA n HF
T LT3 AR T

=7, AT LMY T, holonomy s&#)# F & E A MM &, X+ Chern-Simons P
w, B EE T E [29], FILIRA TR R ZAEFIR PR VFEA]. Fra X KB r
RYEFIE (ABXS T %), #EFR AT (defect). 3 2 EFEL K G.Moore i: “Theories
without defects are defective.(A HRIAMNILIS A TERENT)” B v DL, i 22 +
Hh, BB SRR, LB AR KA . 0 R 3RAT S I e R 1, T4 A ATE
HS RV EARLE I AUE, X2 5 —ANdE ) ExFT Fshil.

B — 32, B n B FRIEHE TR SEI L (HERRENE T2 &), H
FEIX PP FRPEAREL EAT SR B e e R R IR A B — 28 SCORRYE, e AT ) AR B gk
PR, i n-group|9], BLE TG [6).

i

ARE TR AR TR LRI B IR AR, IRTREMEE IR, TOIA[ALE
PEATAE. (B2 RE WAL BRATXS T REFRPE RIS (R B (A2 5, FAN R — 1R 2 NED
Mgl ZAFHR B — OB T MR 22 5 RS54 15 LLSED, A [14] B 5%E0HE
TR AN, B n-group AT AVEREE (3], B [20], R 17) HALERCRS
ETONER, HeA R R SR A REA T P AITE. A BB DUJR O RO R ] [F] 2 RE R B 2
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Calabi’s Program and
Stability Theory

Junhao Tian

Abstract

This lecture notes give an introduction to Calabi’s program about finding “canoni-
cal” metric on a given manifold. We will begin with Yau’s famous work on Calabi
Conjecture. We outline GIT analysis of stability of bundles and variety, and their
connections to the theory of Kélher-Einstein(KE) metrics and constant scalar curva-

ture Kéhler(cscK) Metrics, also briefly sketch out some recent developments.
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my friend Dashen Yan. I have learnt Geometric Analysis from my supervisor Bing Wang
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is nothing but the notes about what I have read during my Undergraduate Research Pro-
gram. I am also very grateful to my classmate Dashen Yan for many helpful conversations

on Kéhler-Einstein metric.

Introduction

1.1 What is a “nice” metric?

“nice” metric on a given manifold, which

Geometric analysts always want to find a
seems to be canonical. The definition of “nice” might be a subtle problem. A natural idea
is that it makes some common functional, such as scalar curvature functional, achieve its

minimum.

Scalar curvature is a higher dimensional analogue of Gauss curvature. Yamabe set
up a problem to ask if one can find a metric such that its scalar curvature is equal to a
given smooth function, moreover, in a given conformal class. In [113], he attempted to
show that any Riemannian structure on a compact manifold of dimension not less than 3
could be pointwise conformally deformed to one of constant scalar curvature. Trudinger
[106] pointed out a serious gap in Yamabe’s proof, and the assertion is in doubt. Kazdan
and Warner [56] had proved that, as long as the function is negative somewhere, there is a
metric whose scalar curvature coincide with the given function. With this in mind, finding a
metric whose scalar curvature is positive at every point sounds easy, since it is only a scalar
inequality on the entire metric. However, there is a topological obstruction to the existence

of metrics with positive scalar curvature.

Actually, some manifold may not admit a metric with positive scalar curvature every-

where. For example, the torus T"(cf. [84, 51]). In dimension 2, the problem of Gaussian

fEFE R HIBER, 2019 HECFRI 20, HlF: tian18Cmail.ustc.edu.cn.
FafHE B 2021 4F 12 A 21 HRHS, 2022 4F 3 A 20 HEE—E, 3 A 21 HiEE%. FftamiE: SRE, HRES
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curvature on 2-manifolds was studied [57]. The key to our study of Gaussian curvatures
was the Gauss-Bonnet theorem which imposes sign restrictions on the Gaussian curvatures
of compact 2-manifolds depending on the Euler characteristic. There is also a topological
implication of scalar curvature which introduces an obstruction to positive scalar curvature
for certain special manifolds. Lichnerowicz has shown [61] that if the scalar curvature is
nonnegative, but not identically zero, on a compact even-dimensional spin manifold, then
there are no harmonic spinors. From this fact, using the Atiyah-Singer index theorem [3]
he concluded that the Hirzebruch A genus of such a manifold must be zero. Thus, one
cannot find a metric with nonnegative scalar curvature, except possibly identically zero, on
a compact spin manifold whose A genus is not zero. Examples of such manifolds arise in

the theory of spin cobordism, see [69].

There is a generalization of A that could completely characterize when a (simply-
connected, spin) manifold admits a metric of positive scalar curvature. It is usually denoted
by @(M), and was first introduced in 1974 by Hitchen [52] who showed that if there is a
metric with positive scalar curvature, then a(M) = 0. The converse was proven by Stolz
in 1990 [87]. For our purposes, the most important property is that it is nonzero only in
dimensions n =0, 1,2,4 mod 8. (Here we assume n > 4.) So there is a possible obstruction
to the positive scalar curvature only in these dimensions. Even in these dimensions, this
obstruction only appears in the case of spin manifolds: If M does not admit spinors, then

it always admits a metric of positive scalar curvature [50].

In view of Yamabe’s problem, a metric is considered to be “nice” if it has constant
scalar curvature. It seems to be special, but such a constant may not be arbitrary. Yabame
invariant p(g) is a conformal invariance that characterizes such a constant: The nontrivial

solution of its Euler-Lagrange equation

-1 ne2
AT A S+ S()f = u(e) fH (1.1)

whose existence is guaranteed by the solution of Yamabe problem [83], gives rise to the

so-called Yamabe metric f#2g, which has constant scalar curvature u(g).

1.2 Calabi’s program
In 1950s, Calabi first proposed to study the constant scalar curvature Kéhler (cscK)

metric problems. His goal is to find the best canonical metric in each given Kéhler class
[15, 16], which introduced the study of a 4th order, fully nonlinear PDE(partial differential
equation). The related PDE is very difficult, for one cannot use the maximal principle or
derive an appropriate estimates of the metric from the bound of the scalar curvature. When
the first Chern class has a definite sign (positive, negative or zero), the cscK metric in the
suitable multiple of the first Chern class reduces to a Kahler-Einstein metrics, which is the
core of this research field for the last a few decades. Mathematicians put great efforts and

developed lots of techniques and finally led to the final resolution of this difficult problem.

In 1958, E. Calabi proved the fundamental C3-estimate for Monge-Ampere equation
[14] which later played a crucial role in Yau’s seminal resolution of Calabi conjecture [114]
in 1976 when the first Chern class is either negative or zero (In the negative case, T. Aubin
has an independent proof [4]) . This work of Yau is so influential that generations of experts

in Kéhler geometry largely followed the same route: Securing a C® estimate first, then move
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on to obtain C?, C? estimates etc. In the case of positive first Chern class, Gang Tian
proved Calabi conjecture in 1989 [94] for the Fano surfaces when the automorphism group
is reductive. It is well known that there are obstructions to the existence of KE metrics
in Fano manifolds; around 1980s, Yau proposed a conjecture which linked the existence of
Kahler Einstein metrics with the stability of underlying tangent bundles. In 1997, Gang
Tian introduced the so-called K-stability (via special degeneration) and showed that the
existence of Kahler-Einstein metric necessarily implies the K-stability of the underlying
polarization through special degeneration [99]. In 2002, S. K. Donaldson reformulated it
into a notion of the algebraic K-stability [40]. This conjecture was settled in 2012 through
a series of work [29, 30, 31], which is quite involved as it sits at the intersection of several
different subjects: algebraic geometry, several complex variables, geometry analysis and

metric differential geometry etc.

With the existence problem of Kéhler-Einstein metric settled eventually, perhaps it is

time to discuss how to tackle Calabi’s original problem in full generality.

Conjecture 1.1 (Yau-Tian-Donaldson). Polarized Kdhler manifold (M,L) is K-stable if

and only if there exist a cscK metric in c1(L).

In 2015, X. X. Chen proposed a “new” continuity path in a given Kéhler class to solve
the cscK metric problem [24]. Also in 2018, X. X. Chen and J. R. Cheng derived the
a priori estimates for the constant scalar curvature Kéhler metrics on a compact Kéhler
manifold, and proved Donaldson’s conjecture on the equivalence between geodesic stability
and existence of cscK when Autg(M,J) # 0 [25, 26, 27]. This deep result generalizes Tian
Gang’s Properness theorem, and the Mabuchi energy is proper if and only if there is a
metric of constant scalar curvature in the class [w]. On the other hand, Sean Paul gives a
complete description of the behavior of the Mabuchi energy along all degenerations. Under
the assumption that Aut(M,J) is finite, this gives the equivalence between the analytic

stability and the algebraic stability.

Theorem 1.1. Let (X, L) be an arbitrary polarized manifold. Assume that Aut(M,J) is
finite. Then (X,L) is asymptotically K-stable if and only if there is a constant scalar

curvature metric in ¢, (L).

The most important idea is to identify the norms conformally equivalent to the standard
L? norms on polynomials. Since the conformal factors are continuous, they are bounded
due to the compactness. The conclusion was that the Mabuchi energy is almost the distance
between the orbits in Hilb, that is, the distance in the usual Fubini Study metric induced by
L? up to some (unknown) error that depends on the degree of the embedding. Based on the
works by Bismut, Gillet, and Soulé [7, 8, 9], Paul [74] recently found a more sophisticated
path to the relationship between the Mabuchi energy restricted to the Bergman metrics
and the resultant and hyperdiscriminant of the subvariety. This revealed that the error
was in fact the difference between the L? norm and another well-known L° norm, i.e. the
Mahler measure. The boundedness of the error, initially attributed to compactness, is just
an expression of the fact that these norms are comparable. The outcome is that the norm
on the space of polynomials, which connects the Mabuchi energy to stability of the pair
(R, A), is exactly given by the Mahler measure. Now the asymptotic stability and the global

bounds of the K-energy maps immediately follow from Tian’s Thesis [95].
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There is also another approach, called Kahler-Ricci flow, to the study of the existence
of Kéhler-Einstein metrics on Fano manifolds. In general, two key ingredients are needed,
namely the partial C%-estimate and the construction of a de-stabilizing test configuration.
The first is analytic and the second is algebraic in nature. For the partial C°-estimate,
it is proved by Székelyhidi [90] for the classical Aubin-Yau continuity path, by adapting
the results of [44, 30, 31]. For the approach using Ricci flow, this was proved by Chen-
Wang [110] in dimension two, Tian-Zhang [104] in dimension three, and Chen-Wang [111]
in all dimensions as a consequence of the resolution of the Hamilton-Tian conjecture. We
note that these results together with the work of Sean Paul [74, 75, 76] already implied
that on a Fano manifold without non-trivial holomorphic vector fields, the existence of a
Kaéhler-Einstein metric is equivalent to the notion of stability defined by Paul. As for the
second ingredient, Datar and Székelyhidi [107] adapted the results of [31] to the Aubin-Yau
continuity path, which gives a new proof of the theorem of Chen-Donaldson-Sun. Chen-
Wang [112] gave another proof using the Ricci flow, which means that technically they will
address the issue of constructing a de-stabilizing test configuration. Notice that this cannot
be naively adapted from [31] and requires new strategy to understand the relation between
the asymptotic behavior of the K&ahler-Ricci flow and algebraic geometry. Their work is
motivated by [82] which studies the tangent cones of non-collapsed Kéhler-Einstein limit

spaces.

When considering about cscK metrics, there is a flow, called Calabi flow, which is
supposed to be used to get cscK metric. Motived by Donaldson’s theorem that links the
balanced embeddings to the metrics with constant scalar curvature [39], Joel Fine [47]
proved the parabolic analogue, balancing flow, which could approximate the Calabi flow
using Donaldson’s techniques [42] with an asymptotic result of Liu and Ma [62]. But I guess
the problem about the long time existence of Calabi flow is still open. For the limitation of

space, we will not discuss the geometry flow method in this article.

Calabi Conjecture

Let us start with Calabi’s initial conjecture about the existence of certain Riemannian
metrics on complex manifolds with given Ricci curvature. Let M be a Ké&hler manifold with
Kéhler metic g = Xg,5dz* ® dz¥ and fundamental form w of g, p is the Ricci form of w.
It is well known that %p represents the first Chern class of M. Calabi made the following
conjecture in 1954 and that was proved by Shing-Tung Yau in 1977.

Conjecture 2.1 (Calabi). If a 1-1 form %ﬁ represents a first Chern class, then there is
a unique Kdihler form @ € [w] € H“*(M,C) N H*(M,R) that lies in the same de Rham

cohomology class of w such that its Ricci curature is p.

Remark 2.1. Yau received the Fields Medal in 1982 in part for this proof. Calabi trans-
formed the conjecture into a nonlinear PDE problem, called complex Monge-Ampére equa-
tion, and showed that this equation has at most one solution and thus established the unique-
ness of the required Kdhler metric. Yau proved the Calabi conjecture by constructing a
solution of this equation using the continuity method in the middle of 1976. This involves
first solving an easier equation, and then showing that a solution to the easy equation can be

continuously deformed to a solution of the hard equation. The hardest part of Yau’s solution
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is the estimates up to second and third orders for the derivatives of solutions.

Proof of Calabi Conjecture by the continuous method. Let p is a 1-1 form such
%ﬁ represents the Chern class, it was well known that p — p is exact, then by dd-lemma:
A F € C*(M,R), called Ricci Potential function, such that

p—p=-V-199F. (2.1)

In the local coordinates, we can write this quotient as a volume form

det g;5

p—p=-V-14dlog . (2.2)

det g;5

If there exists @ € H»'(M,C) N H?>(M,R) that lies in the same de Rham cohomology class
of w, by dd-lemma, 3 ¢ € C*(M,R) such that

gi7 = 8i7 + Oi50. (2.3)

By normalizing F, we now transfer the Calabi conjecture to the question that the equation

below has a unique solution or not.

det (gt] + 61]90) _ eF

2.4

This is Monge-Ampeére equation. The uniqueness part is simple by using the maximal
principle. See Theorem 3.2 for details.

Now we claim that the equation above has a solution ¢ € C*(M). we are going to prove
this claim using continuous method. Consider the set
. det (g;7+9;7) F . : 00
S = {t € [0, 1]| The equation —=£—- = Vol(M)-+*— has a solution in C (M)}.

el
det 8ij [M et

Obviously 0 € § for ¢ = 0 is a solution. If we can show the set S is both open and closed,
this will imply that 1 € S.

To see S is open, we consider a map G : A — B, where

A= {go € C°°(M)| Z(g,-j-+ (p,-]-)dzi ® d7’ defines a metric on M and / =0 },
i, M

B = {f eC”(M)| /Mf:Vol(M) |

G () = det(g;j +¢i7) det(g:7)
and it is not difficult to compute the differential of G at the point ¢

4] _G(po +1¢) = det(g;j + ¢o,7) det(g:7) ' Ay, 0.

By Hodge decomposition theorem, det(g;; + ¢ ;7) det(g,-A,-)‘lA‘pocp = f has a unique solution
¢ € C*(M) if we require fM f= fM ¢ = 0. Hence the differential of G at ¢ is invertible,
which means G maps an open neighborhood of ¢y to an open neighborhood of G(¢g). This

proves S is open.
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We also need to prove S is closed. Let {z,},_, is a sequence in S where lim 7, =T then

gq—

we have a sequence ¢, € S such that

det l'T + l'T t‘lF
det (8ij + ¢4.i7) — Vol(M)-S——. (2.5)
det g;5 /M elaF
We want to show that the sequence converges in some sense, maybe up to subsequence. To

see this, we need the a priori estimates.

C-estimate: We use the method of Nash-Moser iteration [17]. Let us introduce J energy

function
J(g) = / o([wh] ~ ["]). (2.6)
Denote v = ¢ —sup ¢ — 1, we can prove
(—v)r1\ 1 / 1
> - IV (=y)P/?)2 2.
I(CX) 51 [ e (2.7

for p > 1. Use Sobolev inequality

I=0)P2I1, 2 < CLll(=9)P 2l an. (2.8)

Ln-T

Then, we have

IVI? s < CoplIvIITs (2.9)

Let y =25 and p = ¥/ where j =0,1,2 .... Then by induction on j, we get

L L
Vil < Gy IV

S

Zj., L ik
<6 YR

Zi-o 7%‘ T 2
<G, YRR (Cy + 1)Vol(M)
= C,. (2.10)

Let j — oo, we have
vz~ < Ca. (2.11)

C'-estimate: By interpolation, we have the following estimate. We refer to [33] as an

introductory textbook for those who are not familiar with this in PDE.
Vel < C(ll@lles + l1Ag]lLs). (2.12)

C?-estimate: Yau [114] proved the following result in his paper

Ayle ¢ (m+Ap)] > e “¢[AF —m? inf(R;z;7) — Cm(m + Ag)]
i#] ;
(2.13)
+ e CHICH bR )] ¢/ o+ Ay,
i#]

Choose C large enough such that C +inf,;(R;;7) > 1 and we can assume that e ¢ (m+Ap)
attains its maximum at a point p. Then A,[e “¢(m + Ap)] < 0 at p. Consider the right-
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hand side of the equation, (m + Ag¢)(p) has an upper bound depending only on M and F.
Also since m + A = g'/, g7 > 0, we get the following inequality

0 < m+Ap < CseColeinte), (2.14)

Thus, we get C?-estimate.

C%>®-estimate: We use the theory of Evans-Krylov estimate [45]. Let F : R** — R be a

smooth convex elliptic function, u be a smooth solution of
F(D?u) =0 (2.15)
on a bounded domain Q. Then there exist a constant C(Q', ||D?ul|.~, F) such that
ID%ullco@) < (. 1D%ull-. F). (2.16)

where Q' cc Q.

Now we are ready to complete the proof. Differential the equation in S we have

ij 9% dy
dﬁ@g+%ﬂm;(———i+@&J=ku@

dp(e'" det g;5)
3:0; 627 ‘

tqF
Jue

The operator on the left-hand side of equation is uniformly elliptic and the sequence of

(2.17)

coefficients are bounded in the norm | e |y , by the estimate above. The Schauder estimate
shows that |6“’"

are also bounded. From this, we know that |¢,|3 o is bounded, and then

ozP 9
the coefficients are bounded in the norm [¢,;7|1,o- The Schauder estimate again yields that
Zf,‘f is bounded. We go on this way
3,a

{'hpq
87! 077

[P
azpP

[
8z' 077

= |‘10Q|k+3,a = K+l

k,a k+2,a

We then have that Yk, the sequence {¢,},_, is bounded in the norm |e | o. By Ascoli’s
theorem, the sequence has a pointwise convergent subsequence and the limit lies in C*(M).
Since k is arbitrary, we get a smooth solution ¢ of % = Vol(M)fet—FlF where t =T.

i7 e

This proves S is closed.
Proof of Calabi conjecture by Ricci flow method [17]: Let M be a Kahler manifold

with metric g and T = %T[jdzi A d7’ represents the first Chern class ¢;(M). We consider
the complex version of Hamilton equation of the following type

9% _
=T:—R;:,

or T (2.18)

8:5(0) = g7,

where E; denotes the Ricci curvature of g. If we can prove the solution of the equation
above exists for all time # and g;;(7) converges to the limit metric g;;(c0) as t — oo, then we
will get the metric that we want. Bythe global dd-lemma, there exists f € C*(M,R) such
that

Ti- R = fi. (2.19)



146 Calabi’s Program and Stability Theory (NS o de: R — )

Also, we have a smooth real-valued function u € M x [0,13), 0 < ty < oo, with u(0) = 0 such
that

87 = &7 + Ui (2.20)
Then we can equivalently write
ou
W = log det(g;j +u;;) — logdet(g,;;) + f + (1), (2.21)

in which ¢ should satisfy the compatibility condition
/ e = eV Vol(M). (2.22)
M

Now we reduce the problem to the following nonlinear parabolic equation

ou +

=logdet(g;s + u;;) — logdet(g;- )
5 ogdet(g;; +u;5) —logdet(g;;) + f (2.23)
u|[:0 - 09

where u is a solution in the maximal time interval [0, fy), and g defines a Kéhler metric on

M for V t € [0,19). Define a normalization u to be

u=u- Voll(M) ‘/Mu, (2.24)

then ty = o0 and u is uniformly bounded. This makes no difference with continuous method.

The main result is that u(¢) converges in C® topology to a smooth function u(co) as
t — oo, and % converges to a constant in C* topology. From this, we conclude that

I?ijf(oo) =T;;. This proves the problem. We know that % satisfies the equation

~ 0 du

A-—) =0,

E’?u o) o1 (2.25)
E(X,O) = f(x),

By the maximum principle for the parabolic equation that for 0 < t; < 5

sup 22 (1, 15) < sup 2 (x, 1) < sup £(2),
xem Ot xem Ot xeM (2.26)

.. Ou . . Ou .
AT L A
We define

ea(x,0) = s 1)~ =141,

ou . . Ou
l//n(X, t) = E(-x’n -1 +t) _;2}/‘[ E(X’n - 1)a

ou . 0u
w(t) = ng E(x, ) — )}?Af/’[ E(x,t). (2.27)

We need to give an estimate of w(?).

Oscillation Decay: The following Harnack inequality of parabolic equation on compact
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Riemannian manifold is just a modification of Li-Yau’s work. See more details in [73].

Theorem 2.1 (Harnack inequality). Let M be a compact Riemannian manifold with di-

mension n. g;;(t) de a family of Riemannian metric on M such that 3 C1,Cs,C3,K > 0

C18ij(0) < gi(t) < Cag;i;(0), (2.28)
0 ij

' jf < Cs:;(0), (2.29)
R;j(t) > —Kg;;(0). (2.30)

If ¢(x,t) is a positive solution for the equation

0

A — —
(A==

) =0 (2.31)

on M X [0,00), then for YVa > 0 and 0 < t; <ty < co we have

) t9 9 C2diam(M,gq)>
sup ¢(x, 11) < inf @(x,15)(=)"2e™ Aw@-m
xeM xXeEM [1

+[ 2B +C2Ca (n+sup | V2 log o) | (=) (2.32)

It is easy to see g;; satisfies (2.30) , also ¢, and ¥, in (2.27) satisfy (2.31) and are

positive. Using Harnack inequality, we get

sup == (x,n 1) = inf == (x,n = 5) <y |sup == (x,m )—sup “xm)],
xem Ot xeM Ot ) AT sup = .
sup S (n = 2) = inf S vn=1) <y | nf ) = inf Shxn - 1)],
hence we have .
w(n) < (7 . )w(n - 1). (2.34)
Y

Denote a = log( —£-) and by the fact w(r) is monotone decreasing, then we can choose a
constant C4 > 0 Such that
w(t) < Cye™ ™. (2.35)

Energy Decay: Let us define

ou 1 ou
== [ Zav;
px.1) ot Vol(M) /M ot %
B 1
=5/

g02dV§.

(2.36)
E

Let ¢ be large enough such that sup,.,, ¢(x,1) < w(f) < % We can directly compute

dp_ d¢ 1 5 0 3
th_/M P Vit /90 (V)
(% 1 du o
i oz det dV-
/ (at VOZ(M)/ ) »atQ VOZ(M)/ ot 81‘ Og e (gl]+u ) f
1 .
Vol(M)/ (9,2 ] g+_/ (2 a—logdet(glj.|.u;lj)dvg

= [ - v [, e |35 ) - v [, 505 (G av] s
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1 o~ (Ou
— Al—1dV;
+2/M(’0 (8;) &

Ou~ (du 1 ~(0u
—A|—|dVs+ = Al —|dVs
/Mar (6t) g+2/M“’ (ar) g

~dul?
= | (-1-9)|V—| dV;
M( ®) Y 3
<-= [ VeldVg
M
1
<—=4,(1) | $*dV;. (2.37)
2 M

This implies that we can choose C5 > 0 such that

d
—FE < -GsE. 2.38
SE<-Cy (2:33)

Since dV; is uniformly equivalent to dV,, there exists Cg > 0
/ @*dV, < Coe <", (2.39)
M

Now we are in the position to prove the main result. For any 0 < s < s’, we have

_ _ S o
/|u(x,s')—u(x,s)|dvg<// M (x1)
M mds |0t
_// ou 1 /au
Sy Julor volMm) J,, ot
S/lflgoldvgdt
K M
1 du du
— || =ave- | = av
+/S /MVOI(M)',/M@t 8 /Mat &
</ VVol(M) /gonVg dt+Vol(M)/ w(t) dt
s M Ky

< C7/ e_cst/th+Cg/ e dt. (2.40)

dt dv,

dV, dt

dV, dt

The computation above shows that #(x, 7) converge in L! norm. If # does not converge in C*

00

topology, then there exist € > 0 some integer r > 0 and a sequence {¢;};2; with lim; o #; = +00
lu(t) — u(eo)|ler > € (2.41)

for any n. But u(z,) are bounded in C* topology, so there exists a subsequence that converge

to u(o0) in C* topology. It is a contradiction.

KE metric with ¢1(M) < 0

We know that a Kahler manifold is Ké&hler-Einstein if and only if p = Aw. Moreover,
we can reduce it to the cases A =0,1,—1. The conjecture is to ask if there is a Kéhler form
such that p = Aw when Ac1(M) is a Kéhler class.
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When A = 0. It is just a corollary of Calabi conjecture. We now discuss the case 4 = —1.

In this case, we should consider the equation

det (g;7 + 9;5¢) _ oFre

3.1
det g;5 (3.1)

The equation have a unique solution such that g;; + 9;7¢ defines a Kéhler metric.
Theorem 3.1. Let (M, w) be a Kihler manifold, —c1(M) is a Kdhler class, then there is a
Kdhler form such that p = —w. This means M is Kihler-Einstein.
Prove Theorem 3.1 by continuous method

To prove Theorem 3.1, we need the following result about a Monge-Ampeére equation.

Theorem 3.2. Let M be a compact Kihler manifold with Kédhler metric g, dim M = m. Let
F(x) be any smooth function defined on M. Then for any constant k > 0, there exists a

unique smooth function ¢, up to a constant, such that
det(g;; + ¢ij) = el ke det(g;7) (3.2)

and g;7 = g;7 + ¢;; defines a Kdihler metric.
First of all, let us prove the uniqueness of the solution of (3.2) . If ¢ and ¢ are two
solutions, then denote F(x,t) = f + kt, %—f > 0 and we have
det(g;7 +¢;7) = e 59 det(g;7) (33)
and
det(g;; + @i7) = eF @ det(g;5)- (3.4)

Choose a normal local coordinate of g, such that ¢;;—¢;; = 6;;. By AM-GM mean inequality,

we have

eF(XsQZ)—F(x,Qﬂ) _ det(gif + szj)
det(g;; + ¢i7)

=11 [1 + ¢ (@i - %f)]
i=1

1 _ m
<1+ =A - . 3.5
|1+ 20, 35)

By the mean value theorem
@(x) F

F(X,@—F(X,QD):/ E(x,t)dt

#(x) (3.6)
oF

E(x, N [e(x) - e(x)],

where 7(x) € [inf{go(x),J(x)},sup{go(x),ﬁ(x)}]. Assume that ¢(x) — ¢(x) attains its maxi-
mum at xo. If $(xg) — ¢(xo) > 0, then A, (@(x) — ¢(x)) > 0 in a neighborhood of xo. By the
maximal principle and the compactness of M, ¢ — ¢ is a constant function. We switch the
roles of ¢ and ¢ and repeat the discussion above. Finally, we can deduce ¢ — ¢ is a constant

function. This prove the uniqueness.
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Now, let us prove the existence. We are going to prove this using continuous method.

Consider the set
S = {t € [0, 1]| The equation det(g;; + ¢;7) = ¢'/**¥ det(g,;7) has a solution in C""(M)}.

Obviously 0 € S for ¢ = 0 is a solution. If we can show the set S is both open and closed,
this will imply that 1 € S.

To see S is open, we consider a map G : A — B. Where

A= {go € C“(M)| Z(gij+ gol-f)dzi ® d7’ defines a metric on M},
i,

B:= {f € C"“(M)) /Mf = VOl(M)},
G(p) = det(g;; + ¢;7) det(g;7) ™"

As we have discussed in previous section, that G is an open map. Also G1(¢) = e *¢ is an

open map. Thus, G2(¢) = G(¢)G1(¢p) is open map. This proves S is open.

To see § is closed. Let {1,}7., is a sequence in § where lim,_,. f; =T then we have a

sequence ¢, € S such that
det(g;7 + ¢gi7) = elaf*keq det(g;7). (3.7)

Differential the equation we have

iy 0 aQO g
det(g;7 + ¢qi7) &4’ (—Tq + (9pg,~j) d, ("7 ¢4 det gij) - (3.8)

Let ¢,;; achieves its maximum at xo, we have

plaf*keq — det(g;; + @4i7)

det(sy) (3.9)

This immediately implies ¢(xq) < —%"F (xg). Similarly we can derive an estimate of inf,; ¢.
Then we get ¢, is bounded in | ® |y , norm. Going through the process in previous section,

we can prove ¢, is bounded in | e |y , norm. This shows that the sequence of coefficients of

Ay
ozP

,a
bounded. From this information we know that |¢,|s « is bounded, then the coefficients of

O¢pq
ozl

that are also

(3.8) is bounded in the norm |e|y .. The Schauder estimate shows that ‘

(3.8) is bounded in the norm |¢,;;|1,o. The Schauder estimate again provides that

3,
is bounded. We go on this way

9 ae, 3
= |%|k,a = |%|k+2,a = |90q|k+3,a = |%|k+l,af =
We then have that Vk the sequence {¢,};_, is bounded in the norm | e | ,. By Ascoli’s
theorem the sequence has a pointwise convergent subsequence and the limit lies in C*(M).
For the arbitrariness of k, we get a smooth solution @7 of det(g;; + ¢;7) = €'/ det(g;;)

where t = T. This prove S is closed.

Now let us prove Theorem 3.1 . The condition shows that there exists a Kahler form

w such that —p, € ¢1(M). By local computation and the dd-lemma, we find a smooth
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function f such that
80 log det(g;7) = gi7dz' Adz/ + 00 f. (3.10)

By Theorem 3.2 we can solve the equation
det(g;; + ¢i7) = et det(g;7). (3.11)
and g;; = g;;7 + ¢;; defines a Kéhler metric. Combining these results, we have
-840 log det(g;; + ¢;;) = —\/—_1(gi; + gol-;)dzi Ad7. (3.12)

Hence we have found the metric that we are looking for.

The metric is unique. Otherwise, let g be another such metric. Since g,g € [g], that
is, they are lied in the same de Rham class, we can find a smooth function ¥ € C*(M) such

that g;7 = g;7 + ;7 and ¢ also satisfty the equation (3.11)
det(g;; + ;) = ¢~/ det(g,;) (3.13)

and (3.12)
~3dlog det(g;; +,;7) = —V=1(g;7 + ¥;7)dz' A d7. (3.14)

Combining (3.11) (3.12) we have
det(glj'i'lﬁIJ) = el//+C7f det(glj) (315)

for some constant C. That means ¢ + C is also a solution of (3.11). So we get ¢ — ¢ is a

constant, g = g. The Kéhler-Einstein metric is unique.
Stability with GIT analysis

As we can see, KE and cscK metrics minimize or maximize some functionals which
means they are locally stable. In this section, we will see their relationship with algebraic
stability, and we will explain why forming moduli of algebraic varieties should be a GIT

problem.

We want to form a moduli space of polarized algebraic varieties [71]. The polarization
allows us to embed X into a projective space by Kodaira [54]. In fact, for X smooth, a
theorem of Matsusaka tells us that r can be chosen uniformly amongst all (X, L) with the
same Hilbert polynomial P(r) = x(X,L"). Moreover, we can also assume that all higher
cohomology groups H>!(X, L") vanish so that H°(X, L") has dimension P (r), and that any
two (X;, L;) are isomorphic if and only if their embeddings differ by a projective linear map.
Then (X, L) defines a point in the Hilbert scheme of subvarieties of CP", we must classify
the choices of isomorphism, i.e. take the GIT quotient of Hilb by SL(N + 1,C).

By abstract GIT, any choice of SL(N + 1,C)-equivariant (anti-)ample line bundle on
Hilb gives rise to a notion of stability for (X, L). There are many such examples, and we
describe some of those whose associated weights can all be characterized in terms of the
weights on the fibre at the point in Hilb. The Hilbert-Mumford criterion requires us to
consider C* < SL(N +1,C) orbits of X c CP" . This gives rise to a C*-equivariant flat family,
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or test configuration, (X, L) — C. The weight w, ; of the C*-action on fibre is
Wrk = A (N + a, ()K" + -, (4.1)

where

ai(r) = @i + @jpar™ 4 (4.2)

Hilbert-Mumford criterion requires w,; > 0. Donaldson’s refinement of Tian’s original
notion requires one to pick a test configuration first and then choose r > 0. The coefficient
ans1.n > 0 is Donaldson’s version [40] of the Futaki invariant of the C*-action on (X, L).

4.1 Moment map

Fix a metric on CN*! and so grs on CPY and an induced hermitian metric on O(-1).
This induces the symplectic form wpg on a smooth X ¢ CPY. This induces a natural

symplectic, in fact Kahler, structure on (any smooth subset of smooth points of) Hilb:

n

w
Q(v1,v2) :=/WFS(V17V2)L'S’ (4.3)
X n.

where the v;’s are the normal components of holomorphic vector fields along X ¢ CPY. This
is also (a multiple of) the first Chern class of a natural line bundle on Hilb coming from the
“Deligne pairing” of Ox (1) with itself (n + 1)-times [91]. Let m : CPY — su(N +1)* denote
the usual moment map. Then Donaldson [39] defined the moment map for SU(N + 1) ~
(Hilb, Q) takes X ¢ CP" to a multiple of its centre of mass in su(N + 1)*:

Wn

w(X) = /m £s. (4.4)
x nl

The zeros of the moment map correspond to the balanced varieties X ¢ CP".

4.2 Asymptotics of Bergman Kernel

Fix a metric on (X, L) (e.g. by picking a metric on H°(L) and then induce the Fubini-
Study metric on X ¢ P(H°(L*)) and L = O(1). This then induces one on L" for all r, and so
L?-metrics on H(L*) for all . Picking an L2-orthonormal basis s; € H°(L*), we can then

define, for each r, the Bergman kernel:

B,(Xl,.XQ) = Zis,-(xl) ® S,’(Xz)* (45)

on X x X. This is the integral kernel for the L2-orthogonal projection of C* sections of
L" onto holomorphic sections. Restricting to the diagonal gives B, (x) := Z;|s;(x)|%. So the

balanced condition is equivalent to B,(x) being constant on X.

The importance of Bergman kernel comes from Gang Tian’s thesis [95]. His idea is
to approximate the Kihler metrics by the projective embedding. Let ¢, : X — CP™ be
the embedding induced by a given basis of H°(X, L¥), then the projective metrics read as

Wy = %Lka)ps in the same cohomology class as w.

Theorem 4.1 (Tian-Ruan [81]). For any polarized (X, L,w), we can choose v, such that

wy converges to w in C* as k — oo.
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As r — oo, B,(x) has an asymptotic expansion [95, 117, 34, 80, 63|
n 1 n-1 n-2
B, (x) ~r"+ 2—s(x)r +0(" ). (4.6)
n

Roughly speaking, the balanced metrics should tend towards cscK metrics with [w] =

[c1(L)]. What we have seen so far should motivate the following results.

Theorem 4.2 (Donaldson). Suppose that Aut(X,L) is discrete and (X, L*) is balanced for
all sufficiently large k. Suppose that the metrics wy converge in C® to some limit ws as
k — co. Then we has constant scalar curvature. The converse is also true. Suppose that
we 15 a Kdhler metric in the class 2rwc1 (L) with constant scalar curvature. Then (X, L¥) is
balanced for large enough k and the sequence of metrics wy converge in C* to the limit we

as k — .

We hope that the existence of a constant scalar curvature metric should be related
to some appropriate algebraic geometric notion of stability. The theorems stated above
show that this question can be reduced to, on the one hand, the finite-dimensional issue of
the relation between the balanced condition and stability and, on the other hand, to the
question of the convergence of the metrics wy as k — oo. In principle, one might be able
to prove the existence of the constant scalar curvature metrics by directly showing that the
wy converge without using PDE theory, but it is hard to see how one might achieve this.
Even in the classical case of Riemann surfaces it is hard to see how one could obtain this

convergence without the existence of the constant curvature metric.

This result was due to Donaldson [39]. Tian had previously proved K-semistability
for KE metrics [99], and a related convergence result for the sequences of Fubini-Study
metrics [95], following a suggestion of Yau [115]. Using [39], Mabuchi proved that cscK
manifolds with automorphisms are Chow polystable if the automorphisms satisfy a certain
stability condition [66]. Donaldson [41] then showed that cscK = K-semistable without any
condition on the automorphisms. The uniqueness was originally proved by Bando-Mabuchi
[5] for KE metrics, by Chen [23] for cscK metrics when ¢; < 0, then by Donaldson for the
case of general cscK with finite automorphisms. Again, the finite automorphisms condition
was relaxed by Mabuchi and by Chen-Tian [103] in the more general setting of extremal
metrics and Kéhler non-projective metrics.

4.3 Moduli of bundle

Before we work on the stability of variety, let us see a very similar theory which is
almost completely worked out. Just as most mathematicians have done, when we start to
develop a new theory, we always seek for the motivations from other similar theories which
have been well-developed. We have the following picture that illustrate how we can do GIT

analysis on the moduli spaces of bundles over a polarized variety.
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Kempf-Ness
Stability of bundle < 2 Bananced X — Gr(N(r))

‘Wang

N

MGMS | Hilbert-Mumford Donaldson | [r—eo

~

L
Donaldson-Uhlenbeck-Ya
Slope stable < one o oo T s HMY

The formal infinite dimensional gauge theory was described by Atiyah-Bott [2]. Fixing
a compatible hermitian metric on L and inducing a Kahler form w on X, then we find
A = {V is a linear connection |V(g) =0, Fg’z = 0} inherits a natural Kahler structure with
the symplectic form given by Q(a, b) = /X tr(aAb) Aw" ! for a,b € Q' (End E) the tangent

vectors to A. The action U(E) ~ A has a moment map

m(A) = Fy' A" = Aldw" € Q¥ (su(E)), (4.7)

where A = 27ri,u(E)/fX w" is a topological invariant and u(E) is the slope of E. The zeros of
the moment map are Hermitian-Yang-Mills connections. An infinite dimensional version of
Kempf-Ness theorem would be formulated in this way: In a polystable orbit of GL(E), there
should be a HYM connection (i.e. a metric whose associated Chern connection is HYM; we
call this a HYM metric), unique up to the action of U(E), as conjectured by Hitchin and
Kobayashi.

We want to form an algebraic moduli space of bundles E over (X, L) of fixed topological
type. More generally, to get a compact moduli space, we have to consider the coherent
sheaves E of the same Hilbert polynomial y(E(r)) where those E(r) := E ® L" have no
higher cohomology and are generated by their holomorphic sections for r > 0. We use its

monic version, the reduced Hilbert polynomial
pe(r) =r"+ o1y , (4.8)
ap

then FE is stable if and only if pr(r) < pg(r) holds for all coherent subsheaves F — E in the
following sense (depending on the line bundle chosen on the Quot scheme):

o Gieseker stable: pg(r) < pg(r) for all r > 0.

o Slope stable: u(F) < u(E).

The Gieseker stability and the slope stability coincide on curves X. The slope stability
corresponds to taking a certain semi-ample line bundle on the Quot scheme. Roughly
speaking, it is given by restricting sheaves to high degree complete intersection curves in X
and using the usual line bundle for moduli of bundles on the curve. GIT needs modifications
in this situation; and so far, this has been carried out only for surface [55].

As in the varieties case, we can also talk about the balance. Fix compatible hermitian
metrics on L and E induces a Kéhler form on X and an L?-metric on CPY = H°(E(r)). Then
there are actions of SU(N) < SL(N,C) on Gr (Grassmannian of quotients of CV), inducing

a moment map m : Gr — su(N)* and an action SU(N) ~ Maps(X,Gr). Its moment map
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is the integral of (the pullback of) m over X, so we can again talk about the balance and

the asymptotics as r, N — oo.

In the proof of Donaldson’s conjectures [37], Wang [108] shows that the existence of
a balanced map is equivalent to the Gieseker polystability of E. The slope stable bundles
(which are therefore Gieseker stable) admit balanced maps X — Gr for r > 0 [109], and
pulling back the canonical quotient connection on Gr and taking limit » — oo gives a confor-
mally Hermitian-Yang-Mills connection on E (which is HYM after rescaling). Unfortunately,
this is not the way that the results were proved; Wang used the Donaldson-Uhlenbeck-Yau
theorem to give an a priori HYM connection which can be compared to the sequence of

balanced metrics.
Moduli of variety. There is a very similar story of variety below

Kempf-Ness N
Stability of varieties < Z Bananced X € Hilb

N Zhang PN

|
|
|
|
|
|
Hilbert-Mumford | | Ross-Thomas
|
|
|
|
|

N Donaldson Ir—>°0

Donaldson-Tian |
|
|
|
|

~ '

Slope criterion z:::::::::::::::::::::::2 cscK

Instead of letting the dimension N of our quotient problem go to infinity, Donaldson
[36] gave a purely infinite dimensional formal symplectic quotient formulation. The group
of the Hamiltonian diffeomorphisms acts on X and thus on the space of complex structures

which make (X, w) Kéahler: Ham(X,w) ~ J := {w-compatible complex structures on X}.

The Kahler structure on X induces one symplectic structure on J by integration. This
is preserved by Ham(X,w), and we can ask for a moment map. Considering C7’(X) (the
functions of integral zero) that lies in the dual of the Lie algebra C*(X,R)/R by integration
over w", and setting Sy to be the topological constant, average of scalar curvature, Fujiki
[48] and Donaldson [36] showed that moment map is S — Sy. Thus zeros of the moment map

correspond to cscK metrics.

We know that differential of a log-norm function is moment map, we want to set up
an infinite dimensional analogue. Considering an orbit ih, i.e., in the family of Kéhler form

w, = w + 2itddh, we seek for a function such that % = my,. By integration on time

M(w,) = /0 /X (S,—So)ha;—gldt. (4.9)

This is precisely the Mabuchi functional or the K-energy [65], defined up to a constant
(equivalent to the ambiguity in the choice of a lift of a point to the line bundle above it).
Indeed, it can be written as the log-norm functional for a Quillen metric on a line bundle over
the space of Kéhler metrics [70]. Its critical points are cscK metrics, and one expects that
such a metric exists on (X, J) if and only if M is proper on the space of Kéhler metrics on
(X,J), which is the infinite dimensional analogue of quotient of group action. This actually

is the original definition of the Futaki invariant [49] for a smooth polarized manifold (X, L)
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with a C*-action. Noting as above that it is the weight of the induced action on a line
led Donaldson to give the more general definition a,.1,, described earlier, for an arbitrary

polarized scheme (X, L).

As Donaldson explains in [38], the finite dimensional problem of balanced metrics can
be regarded as the quantization of the infinite dimensional problem of cscK metrics, which
emerges as the classical limit as r, N — oo. He proved a quantitative Kempf-Ness theorem
that SU(N + 1) really approximates Ham(X,w) in the sense that its finite dimensional
moment map converges to the infinite dimensional one. The symplectic structures and
the natural norm functionals and weights tend to their infinite dimensional analogues (the
Mabuchi functional and Futaki invariant) as r — oo [38]. Also the space of “algebraic
metrics” (the restrictions of the Fubini-Study metrics SL(N + 1)wgs from CPY ) becomes
dense in the space of all Kéahler metrics as r, N — oo [95]. Thus the quantum picture tends

to the classical one as r — oo.

By the analogue of the Kempf-Ness theorem in finite dimensions and taking the infinite-
dimensional limit of r — oo, it is natural to conjecture a Hitchin-Kobayashi correspondence,
that is, a variety should admit a cscK metric if and only if it is polystable in a certain sense.
In fact, Yau [116] first suggested that there should be a relationship between stability
and the existence of KE metrics. Tian [96] proved this for surfaces, and introduced his
notion of K-stability, and [99] showed it satisfied by Kéhler-Einstein manifolds based on his
work with Ding [35]. The definition of K- stability was generalised to more singular test
configurations by Donaldson [40] who also showed that cscK implies K-semistability [39].
So it was thought that K-polystability, as defined above, should be the right notion to be
equivalent to cscK. Recent explicit examples [1] in the extremal metrics case where there
is a similar conjecture due to Székelyhidi [89] suggest that this should be strengthened to
the analytic K-polystability, which allows more general analytic test configurations instead
of algebraic ones only. In particular, one should allow the line bundle L over the test
configuration to be an R-line bundle: an R-linear combination by tensor product of C*-
linearised line bundles. So the most likely Yau-Tian-Donaldson conjecture as things stand
at the end of 2005 is the following.

Conjecture 4.1 (Yau-Tian-Donaldson). (X, L) is analytically K-polystable — (X, L)

admits a cscK metric. This is unique up to the holomorphic automorphisms of (X, L).

This would be the right higher dimensional generalisation of the uniformisation theorem
for Riemann surfaces. There is very little progress on this conjecture in the = direction
except for projective bundles [13, 53, 79] and Donaldson’s deep work on toric surfaces [40]. In
the KE case, there are sufficient conditions for the existence given by Tian’s a-invariant [93]
and Nadel’s multiplier ideal sheaf, but no one successfully made these related to stability.
Part of the problem, quite apart from the analytical difficulties, is that we do not have a
good intrinsic understanding of stability for varieties, i.e., no one has successfully analysed

the Hilbert-Mumford criterion for varieties.
YTD Conjecture on Fano Manifold

The most ideal theory we might expect would be that every compact manifold with

c1(M) = A[w] has a unique KE metric. But an example of Matsushima [67] showed that
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c1(M) = [w] could not derive p = w. We wish to add some conditions on M such that the
conjecture becomes true. We have discussed the motivation of the KE and cscK metrics.
In this section, we outline the ideas and the techniques in the proof of the existence of KE

and cscK metric.

Let (M, wp) be a Kéhler manifold with ¢;(M) = [wy], then as we have discussed in
Section 1 that the conjecture of Calabi can be reduced to solving the following complex

Monge-Ampére equation

det(g;; + ¢ip) = det(gl-]-)eF"‘/’,

- (5.1)
wo + \/—_wago > 0,

where F € C*(M) is a given function.

By a slight modification of Yau’s proof, we reduced the equation to the C°-estimate of
solutions. Unfortunately, it doesn’t always exist. Tian finally solved the Fano cases in di-
mension 2 [96]. A general question is: which Fano manifolds admit Kéhler-Einstein metrics?
The idea that the appropriate condition should be in terms of “algebro-geometric stability”
was proposed by Yau about 20 years ago, partly by the analogue to the “Kobayashi-Hitchin
correspondence” in the case of holomorphic bundles. Over the years, various different no-
tions of stability have been discussed in literatures, both in the Kéahler-Einstein case and in
the more general situation of constant scalar curvature Kéhler metrics on polarised mani-
folds.

o Futaki: Futaki invariant, 1983.

e Bando, Mabuchi: Mabuchi functional, 1985.

o Tian: a-invariant, 1987.

e Tian: Lie(Aut(M)) is reductive, 1990.

e Yau: Test-configuration, algebraic stability, 1990

o Ding: Ding functional, 1992.

o Tian: K-stability, 1997.

¢ Donaldson: K-stability (formally), 2002.

e Paul: Stable pair, 2012.
The condition proposed by Tian in 1997 first gave the equivalence. Donaldson extended
the definition of K-stability introduced by Tian. This extended definition has two good
properties: (i) It is purely algebraic; (ii) It does not require the smoothness (or normality)
of the limit cycle. Sean Paul’s Stable pair [74] also (iii) completely captured the behavior
of the Mabuchi energy along the degeneration. In the case of a smooth limit cycle, his
definition of the generalized Futaki invariant agrees with the original definition of Ding
and Tian[35]. The generalized Futaki invariant (and the corresponding notion of stability)
proposed by Donaldson in 2002 [40] only satisfies (iii) in the special case of reduced limit
cycle.
5.1 Gromov-Hausdorff limit with non-collapsing condition

We suppose the metric satisfies fixed upper and lower bounds on the Ricci tensor
—C1g < Ric < Cyg. For V,c > 0, let K(n,c,V) denote the class of all such polarized Kéahler
manifold such that the volume of X is V and the “non-collapsing” condition VolB, > c’;—';rz"
holds. The connection induces a holomorphic structure on L and for each positive integer

k there is a natural L? hermitian metric on the space H°(X, L¥). Consider the minimum of
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Bergman function
o(k,K) = mi}r{l B(x). (5.2)
—_ Xe

Kodaira embedding theorem asserts that for each fixed X we have po(k,K) > 0 for large
enough k. A famous result [44] can be regarded as an extension of this well-known statement

which is both uniform over K(n,c,V) and gives a definite lower bound.

Theorem 5.1. Given n,c and V, there is an integer ko and b > 0 such that o(k,K) > b?
for all X € K(n,c,V).

The proof involves a combination of the Gromov - Hausdorff convergence theory—
developed by Anderson, Cheeger, Colding, Gromoll, Gromov, Tian and others over the past
thirty years or so, and the “Hoérmander technique” for constructing holomorphic sections.
When n = 2 the theorem was essentially proved by Tian in [96] and the overall proof is
similar. We remark that the original conjecture of Tian in [97] is stated for Kahler metrics
on Fano manifolds with a uniform positive lower bound on the Ricci curvature, and this
amounts to removing the hypothesis on the upper bound of Ricci curvature in the above

theorem. This remains an interesting open question to study in the future.

The above theorem provides the foundations for a bridge between the differential geo-
metric convergence theory and algebraic geometry, which leads to the following result (as
indicated by Tian).

Theorem 5.2. Given n,c and V, there is a fized k1 and an integer N such that any X in
K(n,c,V) can be embedded in a linear subspace of CPY by sections of L*'. Moreove, if X;
be a sequence in K(n,c,V) with Gromov-Hausdorff limit X.,. Then X is homeomorphic to
a normal projective variety W in CPN . After passing to a subsequence and taking a suitable
sequence of projective transformations, we can suppose that the projective varieties X; € cpV

converge as algebraic varieties to W.

Many of the ideas and arguments required to derive this are similar to those of Ding
and Tian in [35] that considered Fano manifolds with Kéhler-Einstein metrics. Then the
limit is a “Q-Fano” variety, as Ding and Tian conjectured.

5.2 Cheeger-Colding theory

The study of the structure of spaces Y, which are pointed Gromov-Hausdorff limits of
sequences, {(M!, p;)}, of complete, connected Riemannian manifolds whose Ricci curvatures
have a definite lower bound systematically presented by Jeff Cheeger and Tobias H. Colding
[20, 21, 22]. Most of results are applications of the “almost rigidity” theorems for manifolds
of almost nonnegative Ricci curvature [18, 19]. The techniques is the use of the generalized

[4

splitting theorem, “volume cone implies metric cone” and (implicitly) integral Toponogov
theorems together with the tangent cone analysis of the sort employed in geometric measure
theory. The continuity of the volume (of balls) under Gromov-Hausdorff limits also plays a
direct role in the discussion. The continuity of the volume in the case was conjectured by
Anderson-Cheeger and proved in [32].

5.3 Conical KE metric

Now, we look at a pair (X, D) where D is a smooth divisor in a Kéahler manifold X,
and study the existence of Kéahler-Einstein metrics on X with cone singularities along D.

This problem was classically studied on the Riemann surfaces [64, 68, 105], and was first
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considered in higher dimensions by Tian in [97]. Recently, there is a reviving interest on
this generalized problem, mainly due to Donaldson’s program [43] on constructing smooth
Kahler-Einstein metrics on X by varying the angle along an anti-canonical divisor. There

are many subsequent works, see [6, 92, 59].

The strategy to study Kéhler-Einstein metrics on a smooth Fano manifold with cone
singularities along a smooth divisor, witch is proportional to the anti-canonical divisor, is
“interpolation-degneration”. By “interpolation” we show the angles in (0, 2] that admit a
conical Kéahler-Einstein metric form an interval, and by “degeneration” we figure out the
boundary of the interval [60].

5.4 KE metric on Fano manifold

The following remarkable result was proved by Chen, Donaldson and Sun [29, 30, 31].
Theorem 5.3 (Chen-Donaldson-Sun). A Fano manifold X is K-stable if and only if it

admit a Kahler-Einstein metric.

The strategy to prove the existence of KE on Fano manifold follows that suggested in
[43]. We fix some A > 0 such that the linear system [1Kx| contains a smooth divisor D.
We consider the Kéhler-Einstein metrics on X with a cone singularity of cone angle 8 along
D, where B € (0,1] is a variable parameter. Of course when 8 = 1 these are just smooth
Kahler-Einstein metrics. Such metrics with cone singularities were discussed in general
terms some years ago by Tian [97]. More recently, following [43], a detailed theory has been
developed, both on the differential geometric side [11, 43, 44, 85] and the algebraic-geometric
side [60, 72, 88].

The fundamental point is that the modified Futaki invariant Futg(X) is linear in S,
so if we know that Futg(X) = 0 for some 8 < 1 and we know that Futg (X) > 0 for some
B’ < B then we can deduce that Fut(X) < 0 and so X is not K-stable. The existence of a
Kahler-Einstein metric with small cone angle is well-understood. So the problem becomes
to show that if we have an increasing sequence B; — B, With S, < 1 such that there are
Kahler-Einstein metrics w; with these angles then either there is a Kéahler-Einstein metric
with cone angle B, or there is a test configuration X with Futg_(X). Same remark as above
about the small complication when X has automorphisms. This strategy can be regarded as
a variant of the standard “continuity method”, in which one perturbs the Kéhler-Einstein
equation by using a positive (1,1) form.

5.5 Stable pair
Let G be one of the classical subgroups of GL(N + 1,C), (V, p) be a finite dimensional

complex rational representation of G. Let H denote any maximal algebraic torus of G.
By Peter-Weyl theorem and Fourier analysis on Abelian Lie group, algebraic homorphism
A : H — C* form a lattice in RV, we denote the lattice and its dual by Mz, N;. Using

standard representation theory, we can decompose V into the weight spaces

v= P w (5.3)

Aesupp(V)
For v € V\{0}, we define the weight polytope of v is the compact convex integral polytope
N (v) given by the convex hull of the lattice points {1 € supp(v)}. The reader who is not

familiar with representation of Lie group can take [12] as a reference.
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Definition 5.1. Let V and W be finite dimensional complex rational representations of G.
Let v € VA{0} and w € W\{0}. The pair (v,w) is K-semistable if and only if for all H,
N() c N(w). Pair (v,w) is K-stable if and only if for all H, there exist mg € N such that
(vt e@uiV), wm) is K-semistable for all m > mgy, where u is any H-generic vector and q(V)

is degree in the standard representation of G.

Remark 5.1. The reader may easily verify that Hilbert-Mumford stability is a special case

of K-stability. In particular, it provides many examples of K-semistable pairs.

A nontrivial special case of K-stability arises in connection with complex projective
varieties. In order to proceed, let us first recall the Hilbert-Mumford stability theory. The
core of this theory consists of associating a vector bundle E over a subvariety X — PV,
a projective geometric gadget that encodes the object up to projective equivalence. More
precisely, one associates these data with an orbit G - v of some nonzero vector v in a finite
dimensional complex rational G module E. For example, one associates the Gieseker point
to E — X , and one associates either the Hilbert point or the Chow form to a subvariety
X — PV, Similarly, in order to apply K-stability to a smooth projective variety X — PN we
must associate our embedded variety X to a pair v(X) € V\{0}, w(X) € W\{0}, where V and
W are finite dimensional rational G-representations. The notation is intended to suggest
that X is encoded by the pair (v,w). As the reader shall see, each vector is projectively

natural.

Let X" — PV be an irreducible, linearly normal subvariety of degree d. The Cayley-
Chow form of X, denoted by Ry, is the defining polynomial (unique up to scaling) of the
divisor

{L € G (N —n,CV)

LnX %0 = {L( Rx(L) = 0}. (5.4)

When the dual variety XV is indeed a hypersurface, we have the defining polynomial Ay,
unique modulo scaling. Just as in the case of classical resultants and discriminants of poly-
nomials in one variable, we may view the general X-discriminant and Cayley-Chow form as

homogeneous polynomials on spaces of matrices: Ay € C [Mlx(N+1)]a Ry eC [M(n+1)><(N+1)]-

Definition 5.2. We call that X is K-semistable (Definition 5.1) if and only if the pair
(Rieg(AX),Aieg(RX)) is K-semistable for the action of G; X is K-stable if and only if the pair

(R;eg(AX),Aieg(RX)) is K-stable for the action of G.

Paul proved that the Mabuchi energy of (X , wrs|x) restricted to the Bergman metrics
is completely determined by the X-hyperdiscriminant of format (n — 1) and the Chow form
of X. As a corollary, it is shown that the Mabuchi energy is bounded from below for
all degenerations in G if and only if the hyperdiscriminant polytope dominates the Chow

polytope for all maximal algebraic tori H of G.

Theorem 5.4. Let X" — PN be a smooth, linearly normal, complex algebraic variety of
degree d > 2. Then there are norms such that the Mabuchi energy restricted to the Bergman
metrics is given as follows

llo - Axxpnt |12 llo - Rx||?

— deg(Axxpn-1) 1 5.5
”AXXPnleQ eg( X XP ) Og ||RX||2 ( )

Vo (@s) = deg(Rx) log
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The norms which appear on the right-hand side are conformally equivalent to the stan-
dard norms on the spaces of polynomials respectively. These norms were first constructed
in [98]. With this theorem in mind, we reduce the problem of bounding the Mabuchi energy
from below to analyzing the simultaneous G orbit of the resultant and hyperdiscriminant
polynomials inside certain irreducible G modules S; (C¥*') and S, (CN*!) respectively. We
are now prepared to state the fundamental corollary, which first completely provides the
algebraic characterization of the existence of the lower bound for the Mabuchi energy on

the space of Bergman metrics.

Corollary 5.1. The Mabuchi energy is bounded below if and only if

G - [(RIee®), Adee(R))] ﬂG (R 0)] = @. (5.6)

Remark 5.2. It follows from this corollary that the asymptotic expansion of the Mabuchi
energy along any algebraic one parameter subgroup of H (a mazimal algebraic torus of G)
is completely determined by the Chow polytope N(Rx) and the hyperdiscriminant polytope
N (Axxpn-1). Ast — 0, we have

w(A(1)) = Fp() log |t]> + O(1), (5.7)
where
Fp(A) := deg(Ryx) xeN{IAlig,,,l [1(x) — deg(Axxpn-1) xe%%gw [1(x). (5.8)

This gives a complete description of the behavior of the Mabuchi energy along all degener-
ations, that u(A(t)) has a logarithmic singularity as t — 0 and the coefficient of blow up is

an integer.
5.6 Analytic stability of cscK

With the existence problem of Kéhler-Einstein metric settled eventually, it is time to
discuss how to attack Calabi’s original problem in full generality. The cscK metric equation

can be rewritten as a pair of coupled equations

log det(g;7+ ¢;7) = F +log det(g;;),
AyF = —-R+tryRicg.

(5.9)

To attack the existence problem of cscK metrics, we have to study a 4th order PDE
as above. Chen [24] proposed a “new” continuity path in a given Kéahler class to solve the
cscK metric problem. Module out the profound difficulty in analysis, this idea shed light

on the existence problem from direct PDE approach.

For any positive, closed (1,1)-form y, we define a continuous path ¢ € [0, 1] as

 ea(M)][wo] "1
“ [l

1 lwo]™ ]

t|R
[wo] ("]

) =(1-1) (tr%)( - (5.10)

A Kaéhler metric is called twisted cscK metric if its scalar curvature satisfies the equation
above. We call it twisted extremal Kahler metric if the left hand side of the Equation gives

rise to a holomorphic vector field.

When ¢ = 1, this reduces to the equation for cscK metrics. Let I denote the set of time
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parameter ¢ € [0, 1] such that the equation can be solved at time ¢. As usual, our goal is to
first prove that I is not empty which usually means finding a starting point where we can
solve this equation. Then, we prove I is open which is crucial for this program to be viable.

The hard part is of course to prove I is closed which involves a difficult a priori estimate.

The conspicuous and memorable feature of CDS’s proof is the heavy use of Cheeger-
Colding theory on manifold with Ricci curvature bounded from below. The a priori bound
on Ricci curvature for KE metrics made such an application of Cheeger-Colding theory
seamlessly smooth and effective. However, if we want to attack this general conjecture,
there will be a dauntingly high wall to climb since there is no a priori bound on Ricci
curvature. Therefore, the entire Cheeger-Colding theory needs to be re-developed if it is
at all feasible. On the other hand, there is a second, less visible but perhaps even more
significant feature of CDS’s proof: The whole proof is designed for constant scalar curvature
Kahler metrics, and the use of algebraic criteria and Cheeger-Colding theory is to conclude
that the a CY bound holds for Kihler potential so that we apply the apriori estimates for
complex KE metrics developed by Calabi, Yau and others. Indeed, this is exactly how Chen
and Cheng made use of Cheeger Colding theory and stability condition in CDS’s proof to
nail down a C° estimate on potential. Unfortunately, such an estimate is missing in this
generality for a 4th order fully nonlinear equation. Indeed, as noted by other famous authors
in the subject as well, the difficulty permeates the cscK theory are two folds: one cannot
use maximal principle from PDE point of view and one can not have much control of metric
from the bound of the scalar curvature. Recently, Chen and Cheng have an estimate about
cscK [25], which makes Yau-Tian-Donaldson conjecture probably resolvable.

Theorem 5.5. If (M,w,) is a cscK metric, then all higher derivatives of the Kdhler

n

potential function ¢ can be estimated in terms of upper bounded of fM log (z_’,ll) Wl
0

As a consequence, it shows that all higher derivatives of ¢ can be estimated in terms of

ll¢llo. This estimate gives an equivalence between cscK metric and analytic stability [26, 27].

Theorem 5.6 (Chen-Cheng). The polarized Kahler manifold (M, [wo]) is geodesic stable if
and only if the Kdihler class [wo] admits a cscK metric.
5.7 Completion of the proof of Yau-Tian-Donaldson conjecture.

Now we are in a position to give a complete proof of YTD conjecture. Given a homo-
geneous degree d polynomial P on CV*!, we identify it with a section of canonical bundle
O(d) over CP". For any p € [0, o] we define the L? norm by using the Fubini-Study metric.
When p =0, it is defined by

log |Plo = / log |P
cpN

s (5.11)

where log || P||o is called the logarithmic Mahler measure of P. By a well-known proporsition
[10, 46, 58], we have

d (1
-2 (Z ;) +1og [IPll, < log [IPllo < log |1l (5.12)

J=1
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We assume that X is smooth and linearly normal, Choose any L” normalized R, A, then the
L? distance between the points (R}d(eg(AX),Aieg(RX)) and (R;i(eg(AX), 0) is defined by

log tan dist , (o) := log [lo - AFER¥||, —log [|lo - REE™ . (5.13)
The L? distance between the orbit closures is defined to be
log tan dist,, (ORA,O_R) = infG log tan dist , (o). (5.14)
gE

The point is that all of the LP distances measure the same thing: any one of them detects
the semistability of X. What is extraordinary is that the infimum of the Mabuchi energy
restricted to the Bergman metrics at level k is exactly the distance between the orbit closures

in the L, distance.

Definition 5.3. A polarized manifold (X, L) is asymptotically semistable if and only if there
is a uniform constant C = C(h) = 0 such that

disto (O_RA O_R) > eC& (5.15)

for all sufficiently large L¥-embeddings of degree d = k™. A polarized manifold (X,L) is
asymptotically stable if and only if there are uniform constant m € Z* and C = C(h,m) > 0
such that

disto (m O_) > e Ck (5.16)

for all sufficiently large k (the power of the embedding). Where

. km—1) deg(Ax kmdeg(Rx
(v.w) = (1q®R§( ) deg(x) | pkom deg >). (5.17)

As in the definition of the asymptotic semistability, both Rx and Ax have been scaled
to have length one in the norm || - ||o. One should observe that the rates of convergence to
the orbit closures in the definitions, the asymptotic stability, and the semistability differ by

a single factor of k.

The norm appearing in Theorem 5.4 was first considered by Tian in his early works on
CM stability [98, 99, 100, 101, 102]. This norm is conformally equivalent to the L? norm with
a continuous potential || || := e?|| - ||z2. It seems there is very little that one could say about
0 beyond its Holder continuity. However, for families of divisors, the situation considered

here, 6 can be described explicitly, which allows us to significantly improve Theorem 5.4.

llo - Rxll3

I RxII5

llo - Axxen-1 |13

| Axxen-1 15

vo(p,) = deg (Rx) log — deg (Axxpn-1) log (5.18)
We identify the space of homogeneous polynomials of degree d with a section of canonical
bundle O(d) over CPY. Then we let B denote the corresponding complete linear system and
'y the universal family of hypersurfaces over B. An explicit description of 6 is obtained by
noting that 2y is a divisor in B X P"™*! cut out by a section ¥ of p;0p(1) ® p3@:(d). The

following crucial observation was shown by Tian.

Lemma 5.1. There is a uniform constant C such that for all sufficiently large k € N we
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have ) 1|12 o
o w
C+-log|——|< | ==—. 5.19
kOg(Nk+1) /X K Vo (5.19)
We compare the Mabuchi and Aubin energies of the reference metric with the restric-

tions of the Fubini-Study metrics coming from the large projective embeddings, then we

have

Y, 1
Jw (T) = %JUJFSM\.(X)((?D(") + 0(].) (520)

The comparison formulas (5.20) and the lemma 5.1 imply that

1 1
T (—) = LD (80 + T logllol? + O(1). (5.21)

Recall a well known proposition [78, 86]

—deg(Rx)Fy,,, o (¢0) =10g llo" - Rxllo- (5.22)

We have chosen Ry to have length one in the Mahler norm. Inserting (5.21) into (5.22)

allows us to express J,,, restricted to Bergman kernel as a distance function

deg(A ¥, 1
Mwh( ) (= deg(Ax) log | - Ry[l2 + glogllo2) + O(1).  (5.23)

d & T ey 1)

The equation (5.18) and comparison formulas (5.20) give

Vo) _ ot gl Rully + mdeg(R)log o Mxlly |11 5o

Ve (7 2 (n+1)

As usual, we have chosen representatives satisfying ||Rxl|lo = ||Ax|lo = 1. Subtract (5.23)
from (5.24) and use the definition of the L distance to get

- (&) _ deg(Ax) I, (&) _ log tan distg (o - [(v, w)]) Lo, (5.25)

k d k k2 (n + 1)

Recall that the pair (v,w) is given by (5.17), taking the inf over G on both sides of (5.25),

we get

inf
‘PT(»T EBNy

+0(1).  (5.26)

( ( ¥y, ) deg(Ay) (\P(r )) log tan distg (O(V,W) , O‘,)
my g, — —th X =

k d ko k21 (n + 1)

Now we complete the proof of Yau-Tian-Donaldson conjecture 1.1.
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