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1
INTRODUCTION

This EA report aims to summarize the work conducted during the initial phase of 3A. Specifically, it focuses on
studying the framework of recursive computation using the discretization scheme of Feller processes and proving
the convergence of the resulting empirical measures to the invariant distribution. The study is primarily based
on the work of Gilles Pagès and Clément Rey in [1], supplemented by additional theoretical and numerical
extensions.

Invariant measures are fundamental in characterizing the long-term behavior of Feller process; however,
their direct computation is often infeasible due to the complexity of these equations. The core concept involves
approaching the Feller process (Xt) with a discretized process (XΓn), where a careful discretization is required
to ensure both the accuracy and efficiency. Under the proposed framework, the invariant measure of (Xt) can
be approximated through the recursive computation of weighted empirical measures of (XΓn). By imposing
specific assumptions, we obtain the almost sure weak convergence of these measures. This approach signifi-
cantly simplifies the numerical computation of invariant distributions and reduces the algorithm’s space-time
complexity.

The report is organized into three sections. In the first section, we outline the framework of the recursive
algorithm, including the relevant notations, definitions, assumptions on the scheme and weights, key lemmas,
and main theorems.

In the second section, we replicate the recursive algorithm for a new discretization scheme of Ito diffusion,
where we conduct deep analysis for the properties of solutions of a stochastic differential equation. This section
represents our primary theoretical contribution, where detailed lemmas, calculations, and proofs are provided
to ensure a comprehensive understanding of the entire algorithm.

Finally, the third section presents numerical simulations for a simplified one-dimensional case using the
Ornstein–Uhlenbeck process as an example. Drawing on [2] and [3], we discuss parameter selection, adjustments,
and the verification of the theoretical results established in the second section.
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2
GENERAL FRAMEWORK OF RECURSIVE

COMPUTATION

2.1 Construction of empirical measure

In this part we present the general framework of recursive computation detailed in [1]. Let (Ω,G,P) be a
probability space. We consider a Feller process (Xt)t≥0 on (Ω,G,P) taking values in a locally compact and
separable metric space E. We denote by (Pt)t≥0 the associated Feller semi-group on C0(E), i.e. a collection of
positive linear maps from C0(E) to itself such that P0f = f , Pt+sf = PtPsf , t, s ≥ 0, and limt→0 ∥Ptf−f∥∞ = 0.
We can then introduce the infinitesimal generator of (Xt)t≥0 as a linear operator A defined on a subspace D(A)
of C0(E), such that

∀f ∈ D(A), Af = lim
t→0

Ptf − f

t

exists for the ∥ · ∥∞-norm, and D(A) is called the domain of A.
We are interested in the computation of the invariant distribution of (Xt)t≥0, which is characterized by

Echeverria–Weiss theorem:

V = {ν ∈ P(E) : ∀t ≥ 0, Ptν = ν} = {ν ∈ P(E) : ∀f ∈ D(A), ν(Af) = 0}.

When explicit computation of ν is infeasible or the real process is difficult to simulate, the approximation
methods become crucial. We begin by introducing a empirical scheme (X̄Γn)n∈N∗ defined on a time grid
Γn =

∑n
k=1 γk with step sizes (γn)n∈N∗ , satisfying:

0 < γn ≤ γ, lim
n→∞

γn = 0, lim
n→∞

Γn = +∞,

which is generally a simulatable approximation of (Xt)t≥0 at a reasonable computational cost. The pseudo-
generator (Ãγn)n∈N∗ of (X̄Γn)n∈N∗ is a family of linear operators from C0(E) to itself defined by

∀f ∈ C0(E), ∀n ∈ N∗, Ãγnf = Qγnf − f

γn
,

where Qγn is the transition probability distributions given by P(X̄Γn ∈ dy|X̄Γn−1) = Qγn(X̄Γn−1 , dy). We can
also write explicitly

Ãγnf(x) = 1
γn

E[f(X̄Γn) − f(X̄Γn−1) | X̄Γn−1 = x].

Based on (X̄Γn)n∈N∗ , we can build the empirical measures with a weight sequence η := (ηn)n∈N∗ such that

∀n ∈ N∗, ηn > 0, lim
n
Hn = +∞ with Hn =

n∑
k=1

ηk

by defining the random weighted empirical random measures as follows:

νηn(dx) = 1
Hn

n∑
k=1

ηkδX̄Γk−1
(dx),

where δx is the Dirac delta measure centered at x.
The following part is dedicated to show that under certain conditions, a.s. every weak limiting distribution

of (νηn)n∈N∗ belongs to V. In particular, when the invariant measure of (Xt)t≥0 is unique, i.e. V = {ν}, we show
that limn ν

η
nf = νf P-a.s. for a particular class of continuous test functions f .
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2.2 Assumptions

We now present the necessary assumptions in order to prove the convergence of the empirical measures (νηn)n∈N.

Mean-Reverting Recursive Control Let γ̄ > 0, let s ≥ 1, let ψ, ϕ : [v∗,∞) → (0,+∞) be Borel functions,
and let α > 0 and β ∈ R. Suppose that there exists a Borel function V , which we call Lyapunov function, if it
satisfies

LV ≡ (V : E → [v∗,+∞), v∗ > 0, lim
x→∞

V (x) = +∞) (1)

and

RCQ,V (ψ, ϕ, α, β, s) ≡


(i) Ãγψ ◦ V exists for every γ ∈ (0, γ̄],
(ii) ∀x ∈ E, sup

γ∈(0,γ̄]
Ãγψ ◦ V (x) ≤ ψ◦V (x)

V (x)
(
β − αϕ ◦ V (x)

)
,

(iii) lim inf
v→∞

ϕ(v) > β
α , and lim

v→+∞
ϕ(v)ψ(v)1/s

v = +∞.

(2)

The function ϕ thus controls the mean-reverting property, we call it strongly mean-reverting property when
ϕ = Id, and weakly mean-reverting property when limv→∞ ϕ(v)/v = 0. We introduce next the sets of functions
for which the a.s. convergence holds:

CṼψ,ϕ,s(E) := {f ∈ C(E) : |f(x)| = o(Ṽψ,ϕ,s(x))}, where Ṽψ,ϕ,s(x) := ϕ ◦ V (x)ψ ◦ V (x)1/s

V (x) . (3)

Infinitesimal Generator Approximation This assumption control the distance between (Ãγ)γ>0 and A.
We assume that there exists D(A)0 ⊂ D(A) with D(A)0 dense in C0(E) such that:

E(Ã, A,D(A)0) ≡ ∀γ ∈ (0, γ̄], ∀f ∈ D(A)0, ∀x ∈ E, |Ãγf(x) −Af(x)| ≤ Λf (x, γ), (4)

where Λf : E × R+ → R+ can be represented in the following way: Let (Ω, G̃, P̃) be a probability space. Let
g : E → Rq+, q ∈ N, be a locally bounded Borel measurable function, and let: Λ̃f : (E×R+ × Ω̃, B(E)⊗B(R+)⊗
G̃) → Rq+ be a measurable function such that:

sup
i∈{1,...,q}

Ẽ

[
sup
x∈E

sup
γ∈(0,γ̄]

Λ̃f,i(x, γ, ω̃)
]
< +∞, and ∀x ∈ E, ∀γ ∈ (0, γ̄],Λf (x, γ) = ⟨g(x), Ẽ[Λ̃f (x, γ, ω̃)]⟩Rq .

We assume that for every i ∈ {1, . . . , q}, supn∈N∗ νηn(gi, ω) < +∞ P̃(dω)−a.s. and that there exists a measurable
function γ : (Ω, G̃) → ((0, γ̄],B((0, γ̄])) such that one of the following two conditions holds:
(I) P̃(dω̃)-a.s. 

(i) ∀K ∈ KE , lim
γ→0

sup
x∈K

Λ̃f,i(x, γ, ω̃) = 0,

(ii) lim
x→∞

sup
γ∈(0,γ(ω̃)]

Λ̃f,i(x, γ, ω̃) = 0.
(5)

(II) P̃(dω̃)-a.s.
lim
γ→0

sup
x∈E

Λ̃f,i(x, γ, ω̃)gi(x) = 0.

Growth Control and Step Weight Assumption We conclude with a hypothesis concerning the steps in the
approximation. Let ρ ∈ [1, 2] and ϵI : R+ → R+ be an increasing function. For F ⊂ {f : (E,B(E)) → (R,B(R))}
and a Borel function g : E → R+, we assume that, for every n ∈ N,

GCQ(F, g, ρ, ϵI) ≡ P-a.s. ∀f ∈ F, E
[
|f(X̄Γn+1) − Qγn+1f(X̄Γn)|ρ | X̄Γn

]
≤ Cf ϵI(γn+1)g(X̄Γn), (6)
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where Cf > 0 is a finite constant that may depend on f . We suppose that:

SWJ ,γ,η(g, ρ, ϵI) ≡ P-a.s.
∞∑
n=1

∣∣∣∣ ηn
Hnγn

∣∣∣∣ρ ϵI(γn)g(X̄Γn) < +∞, (7)

and

SWJ J ,γ,η(F ) ≡ P-a.s. ∀f ∈ F,

∞∑
n=0

(
ηn+1
γn+1

− ηn
γn

)
+

Hn+1
|f(X̄Γn)| < +∞. (8)

Notice that this last assumption holds as soon as the sequence (ηn/γn)n∈N∗ is non-increasing. Finally we state
a lemma which is useful for verifying the last two assumptions (see Lemma 2.3 in [1] for a proof).

Lemma 1. Let v∗ > 0, V : E → [v∗,∞), and ψ, ϕ : [v∗,∞) → R+ be such that Ãγnψ ◦ V exists for every
n ∈ N∗. Let α > 0, β ∈ R, and s ≥ 1. Let (θn)n∈N∗ be a non-increasing sequence such that

∑
n≥1 θnγn < +∞.

We assume that RCQ,V (ψ, ϕ, α, β, s) (see (2)) holds and that E[ψ ◦ V (X̃Γn0
)] < +∞ for every n0 ∈ N∗. Then

∞∑
n=1

θnγnE[Ṽψ,ϕ,1(XΓn−1)] < +∞,

with Ṽψ,ϕ,1 defined in (3). In particular, let ρ ∈ [1, 2] and let ϵI : R+ → R+ be an increasing function. If we
also assume that

SWJ ,γ,η(ρ, ϵI) ≡
(

1
γn
ϵI(γn)

(
ηn

Hnγn

)ρ)
n∈N∗

is non-increasing and
∞∑
n=1

(
ηn

Hnγn

)ρ
ϵI(γn) < +∞, (9)

then we have SWJ ,γ,η(Ṽψ,ϕ,1, ρ, ϵI) (see (7)). Finally, if

SWJ J ,γ,η ≡

((
ηn+1

γn+1
− ηn
γn

)+ 1
γn ×Hn

)
n∈N∗

is non-increasing and
∞∑
n=1

(
ηn+1

γn+1
− ηn
γn

)+ 1
Hn

< +∞, (10)

then we have SWJ J ,γ, η(Ṽψ,ϕ,1) (see (8)).

2.3 Convergence of empirical measure

In this section, we state the main theorems of recursive computation (see Theorem 2.3 and Theorem 2.4 in [1]
for a proof). First, we show a tightness property which ensures the existence of a weak limiting distribution
for (νηn)n∈N. Then, in a second step, we show that every limiting distributions identified with an invariant
distribution of the Feller process (Xt)t ≥ 0.

Theorem 1 (Almost sure tightness). Let s ≥ 1, ρ ∈ [1, 2], v∗ > 0, and V : E → [v∗,∞), g : E → R+,
ψ : [v∗,∞) → R+, ϵI : R+ → R+ be an increasing function.
(A) Assume that Ãγn (ψ ◦ V )1/s exists for every n ∈ N∗, and GCQ((ψ ◦ V )1/s

, g, ρ, ϵI) (see (6)), SWJ ,γ,η(g, ρ, ϵI)
(see (7)), and SWJ J ,γ,η((ψ ◦ V )1/s) (see (8)) hold. Then

P-a.s. sup
n∈N∗

− 1
Hn

n∑
k=1

ηkÃγk (ψ ◦ V )1/s (
X̄Γk−1

)
< +∞. (11)

(B) Let α > 0 and β ∈ R. Let ϕ : [v∗,∞) → R∗
+ be a continuous function such that Cϕ := supv∈[v∗,∞) ϕ(v)/v <

+∞. Assume that (11), RCQ,V (ψ, ϕ, α, β, s) (see (2)), LV (see (1)) hold. Then

P-a.s. sup
n∈N∗

νηn
(
Ṽψ,ϕ,s

)
< +∞,

with Ṽψ,ϕ,s defined in (3). Therefore, (νηn)n∈N∗ is P-a.s. tight.
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Theorem 2 (Identification of the limit). Let ρ ∈ [1, 2].
(A) Let D(A)0 ⊂ D(A) with D(A)0 dense in C0(E). Assume that Ãγnf exists for every f ∈ D(A)0 and every
n ∈ N∗. Also assume that there exists a Borel function g : E → R+ and an increasing function ϵI : R+ → R+

such that GCQ(D(A)0, g, ρ, ϵI) (see (6)), and SWJ ,γ,η(g, ρ, ϵI) (see (7)), hold and that

lim
n→+∞

1
Hn

n∑
k=1

∣∣∣∣ηk+1

γk+1
− ηk
γk

∣∣∣∣ = 0. (12)

Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

1
Hn

n∑
k=1

ηkÃγkf(XΓk−1) = 0. (13)

(B) Assume that (13) and E(Ã, A,D(A)0) (see (4)) hold. Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

νηn(Af) = 0.

It follows that, P-a.s., every weak limiting distribution νη∞ belongs to V. Finally, if the hypotheses from Theorem
1 (B) hold and V = {ν}, then

P-a.s. ∀f ∈ C̃Ṽψ,ϕ,s(E), lim
n→+∞

νηn(f) = ν(f).

with C̃V ψ,ϕ,s(E) defined in (3).
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3
APPLICATION TO THE DISCRETIZATION SCHEME OF

ITO DIFFUSION

This part is mainly inspired by Section 3.1 of Pagès Gilles, and Clément Rey’s work [4], we will treat a new case
of the discretization scheme of Ito diffusion with the framework proposed in the previous part. We propose an
approach based on polynomial test functions under weakly mean-reverting assumptions. In the first section, we
introduce the problem and state a main theorem. Then in this section, we verify all the necessary assumptions
and finally give a proof.

3.1 Main result

We consider a d-dimensional Brownian motion (Wt)t≥0. We are interested in the solution of the d-dimensional
stochastic equation

Xt = x+
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs,

where b : Rd → Rd and σ : Rd → Rd×d are locally bounded functions. The infinitesimal generator of this process
is given by

Af(x) = ⟨b(x),∇f(x)⟩ + 1
2

d∑
i,j=1

(σσ∗)i,j(x) ∂2f

∂xi∂xj
(x) = ⟨b(x),∇f(x)⟩ + 1

2Tr(σσ
∗(x)∇2f(x)) (14)

and its domain D(A) contains D(A)0 = C3
K(Rd). Notice that D(A)0 is dense in C0(Rd). Assume a Lipschitz

condition holds for b and σ:

∃L, ∀x, y ∈ Rd, ∥b(x) − b(y)∥ + ∥σ(x) − σ(y)∥F ≤ L∥x− y∥, (15)

where ∥ · ∥ is the Euclidean norm, ∥ · ∥F is the Frobenius norm defined by

∥σ∥F :=

√√√√ d∑
i=1

d∑
j=1

|σij |2 = Tr(σ∗σ) 1
2 , ∀σ ∈ Rd×d.

If we pick y = 0, the Lipschitz condition implies the following linear growth condition:

∃L′, ∀x ∈ Rd, ∥b(x)∥ + ∥σ(x)∥F ≤ L′(1 + ∥x∥). (16)

The Lipschitz condition (15) ensures in fact the existence and uniqueness of the solution (Xt)t≥0, and it is
a Feller process with Feller semi-group Ptf : x 7→ Ex[f(Xt)] (see Corollary 19.27 in [5]). We introduce its
discretization scheme defined by (XΓn)n∈N, where the times grid Γn =

∑n
k=1 γk, n ∈ N satisfies

∀n ∈ N∗, 0 < γn ≤ γ̄ := sup
n∈N

γn < ∞, lim
n
γn = 0, lim

n
Γn = ∞. (17)

The pseudo-generator of the scheme (Ãγn)n∈N∗ is defined by

∀f ∈ C0(Rd), Ãγnf(x) = 1
γn

E[f(XΓn) − f(XΓn−1) | XΓn−1 = x].
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Let v∗ > 0 and let ϕ : [v∗,∞) → R+ be a continuous function. Let p > 0 and define ψp(y) = yp. Let α > 0 and
β ∈ R, assume that

lim inf
y→∞

ϕ(y) ≥ β

α
, Cϕ := sup

y≥v∗

ϕ(y)
y

< ∞. (18)

We assume that the Lyapunov function V : Rd → [v∗,∞), satisfies LV :

LV ≡ (V : E → [v∗,+∞), lim
x→∞

V (x) = +∞), (19)

and is essentially quadratic in the sense

∥∇V ∥2 ≤ CV V, ∥D2V ∥∞ < +∞. (20)

We define
∀x ∈ Rd, λψ(x) := λD2V (x)+∇V (x)⊗2ψ′′◦V (x)ψ′◦V (x)−1 . (21)

When ψ(y) = ψp(y) = yp, we will also use the notation λp instead of λψ. Assume the mean-reverting property
of V :

Rp(α, β, ϕ, V ) ≡ ∀x ∈ Rd, ⟨∇V (x), b(x)⟩ + 1
2χp(x) ≤ β − αϕ ◦ V (x), (22)

with χp(x) =
{

∥λ1∥∞∥σ(x)∥2
F if p ≤ 1,

∥λp∥∞2(2p−3)+∥σ(x)∥2
F if p > 1.

(23)

And assume that

B(ϕ) ≡ ∀x ∈ Rd, ∥∇V (x)∥
(
∥b(x)∥2 + ∥σ(x)∥2

F

) 1
2 + ∥b(x)∥2 + ∥σ(x)∥2

F ≤ Cϕ ◦ V (x). (24)

Remark 1. When ϕ(y) = ya for a ∈ [ 1
2 , 1], assumption B(ϕ) (see (24)) can be implied by

∀x ∈ Rd, ∥b(x)∥2 + ∥σ(x)∥2
F ≤ C ′V (x)2a−1. (25)

In fact, since ∥∇V (x)∥ ≤ C
1
2
V V (x) 1

2 , we have

∥∇V (x)∥(∥b(x)∥2 + ∥σ(x)∥2
F ) 1

2 + ∥b(x)∥2 + ∥σ(x)∥2
F ≤ (CV C ′) 1

2V (x)a + C ′V (x)2a−1 ≤ CV (x)a.

Theorem 3. Let p ≥ 1, a ∈ (0, 1], s ≥ 1, ρ ∈ [1, 2], ψp(y) = yp, ϕ(y) = ya and ϵI(γ) = γ
ρ
2 . Let α > 0

and β ∈ R. Assume that Lipschitz condition (see (15)), (17), (18), LV (see (19)), (20), Rp(α, β, ϕ, V ) (see
(22)), B(ϕ) (see (24)), SWJ ,γ,η(ρ, ϵI) (see (9)), SWJ J ,γ,η(V p/s) (see (8)) and (12) are satisfied, and that
apρ ≤ p+ a− 1. If p

s + a− 1 > 0, then (νηn)n∈N∗ is P − a.s. tight and

P − a.s. sup
n∈N∗

νηn(V p/s+a−1) < +∞. (26)

Moreover, assume that there is some ϵ > 0, such that gσ ≤ CV p/s+a−1, with gσ = (∥b∥2 + ∥σ∥2
F )1+ϵ. Then

every weak limiting distribution ν of (νηn)n∈N∗ is an invariant distribution of (Xt)t≥0, and when ν is unique, we
have

P − a.s. ∀f ∈ CṼψp,ϕ,s(R
d), lim

n→∞
νηn(f) = ν(f),

with CṼψp,ϕ,s(R
d) defined in (3).

Remark 2. 1. When p
s ≤ p + a − 1, assumption SWJ J ,γ,η(V p/s) (see (8)) can be replaced by SWJ J ,γ,η

(see (10)) by Lemma 1.

2. When p
s > 1, there is some ϵ > 0, such that gσ ≤ CV p/s+a−1, with gσ = (∥b∥2 + ∥σ∥2

F )1+ϵ by assumption
B(ϕ) (see (18)).
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3.2 Recursive control

Proposition 1. Under the assumptions of (15), (17), (18), and assume that (19), (20), (22), (24) are satisfied.
Then, for every α̃ ∈ (0, α), there exists n0 ∈ N∗, such that

∀n ≥ n0, ∀x ∈ Rd, Ãγnψp ◦ V (x) ≤ ψp ◦ V (x)
V (x) p(β − α̃ϕ ◦ V (x)). (27)

Before getting into the main proof, we first introduce some lemmas which are curial in the proof.

Lemma 2. Let l ∈ N∗, we have the following inequality:

∀α > 0, ∀ui ∈ Rd, i = 1, · · · , l,
∣∣∣∣ l∑
i=1

ui

∣∣∣∣α ≤ l(α−1)+

l∑
i=1

|ui|α. (28)

Lemma 3 (Burkholder inequality). For all p ≥ 2, there exists Cp > 0 s.t.

E

[
sup
s≤T

∥∥∥∥∫ s

0
σ(Xu)dWu

∥∥∥∥p] ≤ CpE

[(∫ T

0
∥σ(Xu)∥2

F du

) p
2
]

(29)

Proof. Since all the matrix norms are equivalent, we obtain this result by a standard Burkholer inequality (see
Theorem 18.17 in [5]).

Lemma 4. With the notions above and assume γn+1 ≤ 1, we have

E[∥XΓn+1 −XΓn∥2 | XΓn ] = E

[∥∥∥∥ ∫ Γn+1

Γn
b(Xs)ds

∥∥∥∥2
+
∫ Γn+1

Γn
∥σ(Xs)∥2

F ds

∣∣∣∣ XΓn

]
≤ E

[ ∫ Γn+1

Γn
γn+1∥b(Xs)∥2 + ∥σ(Xs)∥2

F ds

∣∣∣∣ XΓn

]
.

(30)

In particular,

E[
∫ Γn+1

Γn
∥Xs −XΓn∥2ds | XΓn ] =

∫ Γn+1

Γn
E[∥Xs −XΓn∥2 | XΓn ]ds

≤
∫ Γn+1

Γn
E[
∫ s

Γn
∥b(Xu)∥2 + ∥σ(Xu)∥2

F du | XΓn ]ds ≤ γn+1E[
∫ Γn+1

Γn
∥b(Xs)∥2 + ∥σ(Xs)∥2

F ds | XΓn ].
(31)

Proof. Since the solution of a stochastic differential equation is a homogeneous Markov process (see Section 2
in [6]), we have

E[Ψ(X•+s) | Fs] = E[Ψ(X•+s) | Xs] = EXs [Ψ(X•)], (32)

for all bounded measurable functionals Ψ of the sample paths (see Remark 6.3 in [5]). Hence

E[∥XΓn+1 −XΓn∥2 | XΓn ] = EXΓn [∥Xγn+1 −X0∥2]

= EXΓn

[∥∥∥∥ ∫ γn+1

0
b(Xs)ds

∥∥∥∥2]
+ EXΓn

[∥∥∥∥ ∫ γn+1

0
σ(Xs)dWs

∥∥∥∥2]
.

(33)

The second term is treated by multivariate Ito isometry (see Appendix D, Lemma 18 in [7]):

EXΓn

[∥∥∥∥ ∫ γn+1

0
σ(Xs)dWs

∥∥∥∥2]
= EXΓn

[ ∫ γn+1

0
∥σ(Xs)∥2

F ds

]
= E[

∫ Γn+1

Γn
∥σ(Xs)∥2

F ds | XΓn ]. (34)

And we conclude by using the Markov property to the first term in (33).
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Lemma 5. Suppose that p ≥ 1, C2p defined as in Lemma 3, let 0 < δ < 1 s.t. 1 − 3p−122pL2C2pδ
p > 0, let

K > 0 s.t.
(1 − 3p−122pL2C2pδ

p)K ≥ 3p−1 + 3p−1Lp22p+ 1
2C

1
2
2pδ

p
2K

1
2 , (35)

Suppose n0 ∈ N s.t. λn+1 ≤ δ, ∀n ≥ n0, then for every n ≥ n0, we have

E

[(∫ Γn+1

Γn
∥b(Xs)∥2ds

)p
+
(∫ Γn+1

Γn
∥σ(Xs)∥2

F ds

)p ∣∣∣∣ XΓn

]
≤ Kγpn+1(∥b(XΓn)∥2p + ∥σ(XΓn)∥2p

F ). (36)

Proof. Using the fact that (Xt) is a Markov process as mentioned in Lemma 4, (36) is equivalent to

EXΓn

[(∫ γn+1

0
∥b(Xs)∥2ds

)p
+
(∫ γn+1

0
∥σ(Xs)∥2

F ds

)p]
≤ Kγpn+1(∥b(XΓn)∥2p + ∥σ(XΓn)∥2p

F ). (37)

For simplicity we note

P := EXΓn

[(∫ γn+1

0
∥b(Xs)∥2ds

)p
+
(∫ γn+1

0
∥σ(Xs)∥2

F ds

)p]
. (38)

Q := γpn+1(∥b(XΓn)∥2p + ∥σ(XΓn)∥2p
F ). (39)

We have

EXΓn

[(∫ γn+1

0
∥σ(Xs)∥2

F ds

)p]
= EXΓn

[(∫ γn+1

0
(∥σ(Xs)∥2

F − ∥σ(XΓn)∥2
F )ds+ γn+1∥σ(XΓn)∥2

F

)p]
(40)

Since σ is Lipschitz,∫ γn+1

0
(∥σ(Xs)∥2

F−∥σ(XΓn)∥2
F )ds =

∫ γn+1

0
⟨2σ(XΓn), σ(Xs) − σ(XΓn)⟩F + ∥σ(Xs) − σ(XΓn)∥2

F ds

≤ 2L∥σ(XΓn)∥F
∫ γn+1

0
∥Xs −XΓn∥ds+ L2

∫ γn+1

0
∥Xs −XΓn∥2ds

(41)

By using Lemma 2 and (41), we obtain from (40) that

EXΓn

[(∫ γn+1

0
∥σ(Xs)∥2

F ds

)p]
≤ 3p−1

(
(2L)p∥σ(XΓn)∥pFEXΓn

[(∫ γn+1

0
∥Xs −XΓn∥ds

)p]
+ L2EXΓn

[(∫ γn+1

0
∥Xs −XΓn∥2ds

)p]
+ γpn+1∥σ(XΓn)∥2p

F

) (42)

By appling Cauchy’s inequality and Jensen’s inequality, we have

EXΓn

[(∫ γn+1

0
∥Xs −XΓn∥ds

)p]
≤ EXΓn

[(
γ

1
2
n+1
( ∫ γn+1

0
∥Xs −XΓn∥2ds)

) 1
2

)p]
≤ γ

p
2
n+1EXΓn

[(∫ γn+1

0
∥Xs −XΓn∥2ds

)p] 1
2

.

(43)

We compute the last term in (43):

EXΓn

[(∫ γn+1

0
∥Xs −XΓn∥2ds

)p]
= EXΓn

[(∫ γn+1

0

∥∥∥∥ ∫ s

0
b(Xu)du+

∫ s

0
σ(Xu)dWu

∥∥∥∥2
ds

)p]
≤ EXΓn

[(∫ γn+1

0

(
2s
∫ s

0
∥b(Xu)∥2du+ 2

∥∥∥∥∫ s

0
σ(Xu)dWu

∥∥∥∥2)
ds

)p]
≤ EXΓn

[
γp−1
n+1

∫ γn+1

0

(
2s
∫ s

0
∥b(Xu)∥2du+ 2

∥∥∥∥ ∫ s

0
σ(Xu)dWu

∥∥∥∥2)p
ds

]
(Jensen’s inequality)

≤ γ2p
n+122p−1EXΓn

[(∫ γn+1

0
∥b(Xu)∥2du

)p]
+ γpn+122p−1EXΓn

[
sup

s≤γn+1

∥∥∥∥∫ s

0
σ(Xu)dWu

∥∥∥∥2p]
≤ γpn+122p−1C2pP (Burkholder inequality, see Lemma 3)

(44)
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From (42), (43) and (44) we have

EXΓn

[(∫ γn+1

0
∥σ(Xs)∥2

F ds

)p]
≤ 3p−1(2L)p2p− 1

2C
1
2
2pγ

p
2
n+1Q

1
2P

1
2

+ 3p−1L222p−1C2pγ
p
n+1P + 3p−1γpn+1∥σ(XΓn)∥2

F .

(45)

Similarly, by replacing the Frobenius norm of σ(X) in (45) by the Euclidean norm of b(X) and adding two
inequalities, we get

P ≤ 3p−1Lp22p+ 1
2C

1
2
2pγ

p
2
n+1Q

1
2P

1
2 + 3p−1L222pC2pγ

p
n+1P + 3p−1Q. (46)

Since γn+1 ≤ δ, from (35) we get

(1 − 3p−122pL2C2pγ
p
n+1)K ≥ 3p−1 + 3p−1Lp22p+ 1

2C
1
2
2pγ

p
2
n+1K

1
2 ,

and with (46), we easily see that P ≤ KQ.

Corollary 1. Suppose that p > 0, let δ,K, n0 be defined as in Lemma 5, then for all n ≥ n0, there exists
Mp > 0 which depends on p s.t.

E[∥XΓn+1 −XΓn∥2p | XΓn ] ≤ Mpγ
p
n+1

(
∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F

)p
. (47)

Proof. Case p ≥ 1. By applying Lemma 2, we have

E[∥XΓn+1 −XΓn∥2p | XΓn ] ≤ 22p−1E

[∥∥∥∥ ∫ Γn+1

Γn
b(Xs)ds

∥∥∥∥2p ∣∣∣∣ XΓn

]
+ 22p−1E

[∥∥∥∥ ∫ Γn+1

Γn
σ(Xs)dWs

∥∥∥∥2p ∣∣∣∣ XΓn

]
.

The first term can be controlled using Cauchy’s inequality:

E

[∥∥∥∥ ∫ Γn+1

Γn
b(Xs)ds

∥∥∥∥2p ∣∣∣∣ XΓn

]
≤ γpn+1E

[(∫ Γn+1

Γn
∥b(Xs)∥2ds

)p ∣∣∣∣ XΓn

]
.

And we can treat the second term with Burkholder inequality (see Lemma 3):

E

[∥∥∥∥ ∫ Γn+1

Γn
σ(Xs)dWs

∥∥∥∥2p ∣∣∣∣ XΓn

]
= EXΓn

[∥∥∥∥ ∫ γn+1

0
σ(Xs)dWs

∥∥∥∥2p]
≤ C2pE

XΓn

[(∫ Γn+1

Γn
∥σ(Xs)∥2

F ds

)p]
= C2pE

[(∫ Γn+1

Γn
∥σ(Xs)∥2

F ds

)p ∣∣∣∣ XΓn

]
.

Then (47) is a direct consequence of Lemma 5.
Case p < 1. Since x 7→ xp is concave, we can use Jensen’s inequality to conclude that

E[(∥XΓn+1 −XΓn∥2)p | XΓn ] ≤ E[∥XΓn+1 −XΓn∥2 | XΓn ]p ≤ Mp
1 γ

p
n+1

(
∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F

)p
.

Proof of Proposition 1. By definition of Ãγn , (27) is equivalent to

E[ψ ◦ V (XΓn+1) − ψ ◦ V (XΓn) | XΓn ] ≤ γn+1ψ ◦ V (XΓn)
V (XΓn) (β − αϕ ◦ V (XΓn)). (48)
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Case p ≥ 1. From Taylor’s formula and the definition of λp (see (21)) we have

ψp ◦ V (XΓn+1) = ψp ◦ V (XΓn) + ⟨XΓn+1 −XΓn ,∇V (XΓn)⟩ψ′
p ◦ V (XΓn)

+ 1
2(D2V (Υn+1)ψ′

p ◦ V (Υn+1) + ∇V (Υn+1)⊗2ψ′′
p ◦ V (Υn+1))(XΓn+1 −XΓn)⊗2

≤ ψp ◦ V (XΓn) + ⟨XΓn+1 −XΓn ,∇V (XΓn)⟩ψ′
p ◦ V (XΓn)

+ 1
2λp(Υn+1)ψ′

p ◦ V (Υn+1)|XΓn+1 −XΓn |2,

(49)

with Υn+1 ∈ (XΓn , XΓn+1). First we deduce from (20) that supx∈Rd λp(x) < ∞. And we have

E[⟨XΓn+1 −XΓn ,∇V (XΓn)⟩ | XΓn ] − γn+1⟨b(XΓn),∇V (XΓn)⟩

= E[
∫ Γn+1

Γn
⟨b(Xs) − b(XΓn),∇V (XΓn)⟩ds | XΓn ] ≤ L∥∇V (XΓn)∥E[

∫ Γn+1

Γn
∥Xs −XΓn∥ds | XΓn ]

≤ Lγ
1
2
n+1∥∇V (XΓn)∥E[

∫ Γn+1

Γn
∥Xs −XΓn∥2ds | XΓn ] 1

2 ,

(50)

where we used (43) with p = 1 for the last inequality. Using Lemma 4 (see (31)) and Lemma 5 (see (36) with
p = 1), we deduce from (50) that

E[⟨XΓn+1 −XΓn ,∇V (XΓn)⟩ | XΓn ] − γn+1⟨b(XΓn),∇V (XΓn)⟩

≤ Lγ
3
2
n+1∥∇V (XΓn)∥E[ 1

γn+1

∫ Γn+1

Γn
∥b(Xs)∥2 + ∥σ(Xs)∥2

F ds | XΓn ] 1
2

≤ LK
1
2 γ

3
2
n+1∥∇V (XΓn)∥(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F ) 1
2 ,

(51)

for all n ≥ n0 with n0,K defined as in Lemma 5. From Lemma 4 (see (30)) we have

E[∥XΓn+1 −XΓn∥2 | XΓn ] ≤ E[
∫ Γn+1

Γn
γn+1∥b(Xs)∥2 + ∥σ(Xs)∥2

F ds | XΓn ]

≤ γ2
n+1E[ 1

γn+1

∫ Γn+1

Γn
∥b(Xs)∥2 + ∥σ(Xs)∥2

F ds | XΓn ] + E[
∫ Γn+1

Γn
∥σ(Xs)∥2

F ds | XΓn ]
(52)

For the last term of (52), we use (45) and Lemma 5 (see (36)) with p = 1:

E[
∫ Γn+1

Γn
∥σ(Xs)∥2

F ds | XΓn ] − γn+1∥σ(XΓn)∥2
F ≤ 2 3

2LC
1
2
2 γ

1
2
n+1Q

1
2P

1
2 + 2L2C2γn+1P

≤ (2 3
2LC

1
2
2 K

1
2 γ

1
2
n+1 + 2L2C2γn+1K)Q = γ

3
2
n+1C(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F ),
(53)

with C = 2 3
2LC

1
2
2 K

1
2 + (2L2C2 + 1)γ

1
2
n+1K, where we adapt the notations P and Q defined in (38) and (39) for

a more concise writing. Together with (52) and (53), we obtain

E[∥XΓn+1 −XΓn∥2 | XΓn ] ≤ γn+1∥σ(XΓn)∥2
F + γ

3
2
n+1C(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F ), (54)

Assume first that p = 1. From (49), (51) and (54) we have

E[V (XΓn+1) − V (XΓn) | XΓn ] ≤ γn+1

(
⟨b(XΓn),∇V (XΓn)⟩ + 1

2∥λ1∥∞∥σ(XΓn)∥2
F

)
+ γ

3
2
n+1

(
LK

1
2 ∥∇V (XΓn)∥(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F ) 1
2 + 1

2∥λ1∥∞C(∥b(XΓn)∥2 + ∥σ(XΓn)∥2
F )
)
.
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By using B(ϕ) (see (24)), for every α̃ ∈ (0, α), there exists n0(α̃) > n0 such that for every n ≥ n0(α̃),

γ
3
2
n+1
(
LK

1
2 ∥∇V (XΓn)∥(∥b(XΓn)∥2+∥σ(XΓn)∥2

F ) 1
2 + 1

2∥λ1∥∞C(∥b(XΓn)∥2 + ∥σ(XΓn)∥2
F )
)

≤ γn+1(α− α̃)ϕ ◦ V (XΓn).

From assumption Rp(α, β, ϕ, V ) (see (22)), we conclude that

Ãγnψ ◦ V (x) ≤ β − α̃ϕ ◦ V (x).

Assume now that p > 1. Since ∥∇V ∥2 ≤ CV V ,
√
V is Lipschitz. We use Lemma 2 to obtain that

V p−1(Υn+1) ≤ (
√
V (XΓn) + [

√
V ]1∥XΓn+1 −XΓn∥)2p−2 ≤ 2(2p−3)+V p−1(XΓn) + [

√
V ]2p−2

1 ∥XΓn+1 −XΓn∥2p−2.
(55)

Then by using (51), (54), (55) and Corollary 1 (see (47)), we derive from (49) that

E[V p(XΓn+1) − V p(XΓn) | XΓn ] ≤ γn+1⟨b(XΓn),∇V (XΓn)⟩pV p−1(XΓn)

+ 1
2γn+1∥λp∥∞2(2p−3)+pV p−1(XΓn)∥σ(Xs)∥2

F +R,

with R = γ
3
2
n+1LK

1
2 ∥∇V (XΓn)∥(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F ) 1
2 pV p−1(XΓn)

+ γ
3
2
n+1

1
2∥λp∥∞2(2p−3)+pV p−1(XΓn)C(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F )

+ γpn+1
p

2∥λp∥∞[
√
V ]2p−2

1 M
(
∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F

)p
.

Notice that ϕ ◦ V (x) < CϕV (x) (see (18)) and by using B(ϕ) (see (24)), for every α̃ ∈ (0, α), there exists
n0(α̃) > n0 such that for every n ≥ n0(α̃),

R ≤ γn+1(α− α̃)pV p−1(XΓn)ϕ ◦ V (XΓn),

which leads to the recursive control for p > 1 from assumption Rp(α, β, ϕ, V ) (see (22)).
Case p < 1. Since x 7→ xp is concave, we have

V p(XΓn+1) − V p(XΓn) ≤ pV p−1(XΓn)(V (XΓn+1) − V (XΓn)).

The recursive control for p < 1 follows immediately the case p = 1 which we have just proved.

3.3 Proof of the infinitesimal estimation

Proposition 2. Assume the Lipschitz condition (15) and that there exists ϵ > 0 s.t.

sup
n∈N∗

νηn
(
(1 + ∥b∥2 + ∥σ∥2

F )ϵ(∥b∥2 + ∥σ∥2
F )
)
< +∞ (56)

Then E (Ã, A,D0(A)) (see (4)) holds, i.e. there is γ̄ such that

∀γ ∈ (0, γ̄], ∀f ∈ C3
K(Rd), ∀x ∈ Rd, ∥Ãγf(x) −Af(x)∥ ≤ Λf (x, γ),

where Λf (x, γ) = g(x)Λ̃f (x, γ) with g : Rd → R+ a locally bounded Borel measurable function. Moreover, g and
Λ̃f satisfy supn∈N∗

νηn(g) < +∞ and
(i) ∀K ∈ KRd , lim

γ→0
sup
x∈K

Λ̃f (x, γ) = 0,

(ii) lim
x→∞

sup
γ∈(0,γ̄]

Λ̃f (x, γ) = 0. (57)

We remark that (57) is in fact a special case of (5).
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Proof. For f ∈ C3
K(Rd), we note d the diameter of supp(f), i.e. d = maxx∈supp(f) ∥x∥. To treat the pseudo-

generator Ãγ , we first apply an Itô formula:

E[f(XΓn+1) − f(XΓn) | XΓn ] = E[
∫ Γn+1

Γn
⟨b(Xs),∇f(Xs)⟩ds+

∫ Γn+1

Γn

1
2Tr(σσ

∗(Xs)∇2f(Xs))ds | XΓn ]. (58)

We begin by studying the first term of (58):

E[
∫ Γn+1

Γn
⟨b(Xs),∇f(Xs)⟩ds | XΓn ] − γn+1⟨b(XΓn),∇f(XΓn)⟩

= E[
∫ Γn+1

Γn
⟨∇f(Xs) − ∇f(XΓn), b(XΓn)⟩ + ⟨∇f(Xs), b(Xs) − b(XΓn)⟩ds | XΓn ].

(59)

We observe that, if ∥Xs − XΓn∥ < ∥XΓn∥ − d, which also implies ∥XΓn∥ > d, we can deduce that XΓn , Xs do
not belong to supp(f). Thus we can add the indicator function 1∥Xs−XΓn∥≥∥XΓn∥−d in the RHS of (59). Let
α > 0 such that α

2 < ϵ, since ∇f ∈ C2
K(Rd), it is α−Hölder continuous, and we define |∇f |C0,α to be its Hölder

coefficient. Then the first term in the RHS of (59) can be controled as:

E[
∫ Γn+1

Γn
⟨∇f(Xs) − ∇f(XΓn), b(XΓn)⟩ds | XΓn ]

≤ |∇f |C0,α∥b(XΓn)∥E[
∫ Γn+1

Γn
∥Xs −XΓn∥α1∥Xs−XΓn∥≥∥XΓn∥−dds | XΓn ]

Hölder
≤ |∇f |C0,α∥b(XΓn)∥

∫ Γn+1

Γn
E[∥Xs −XΓn∥2 | XΓn ]α2 E[1∥Xs−XΓn∥≥∥XΓn∥−dds | XΓn ]

2−α
2 ds

≤ γn+1|∇f |C0,α∥b(XΓn)∥ sup
Γn≤s≤Γn+1

E[∥Xs −XΓn∥2 | XΓn ]α2 sup
Γn≤s≤Γn+1

E[1∥Xs−XΓn∥≥∥XΓn∥−d | XΓn ]
2−α

2 .

For the last term, we can use Markov’s inequality:

E[1∥Xs−XΓn∥≥∥XΓn∥−d | XΓn ] ≤ min
(

E[∥Xs −XΓn∥2 | XΓn ]
(∥XΓn∥ − d)2 , 1

)
1∥XΓn∥>d + 1∥XΓn∥≤d

By applying Corollary 1 we conclude that

1
γn+1

E[
∫ Γn+1

Γn
⟨∇f(Xs) − ∇f(XΓn), b(XΓn)⟩ds | XΓn ] ≤ g1(XΓn) ˜Λf,1(XΓn , γn+1),

with
g1(x) = |∇f |C0,α∥b(x)∥M

α
2

1 (∥b(x)∥2 + ∥σ(x)∥2
F )α2 (1 + ∥b(x)∥2 + ∥σ(x)∥2

F )δ,

˜Λf,1(x, γ) = γ
α
2

(1 + ∥b(x)∥2 + ∥σ(x)∥2
F )δ

(
min

(
(M1γ) 2−α

2 (∥b(x)∥2 + ∥σ(x)∥2
F ) 2−α

2

(∥x∥ − d)2−α , 1
)

1∥x∥>d + 1∥x∥≤d

)
,

where M1 is defined as in Corollary 1, δ > 0 s.t. α
2 + δ < ϵ. Since b and σ have sub-linear growth (see (16)),

it’s easy to see that ˜Λf,1 satisfies the condition (57). And from (56), we obtain that supn∈N∗
νηn(g1) < +∞.

Similarly, we use the fact that b is L-Lipschitz to the second term in the RHS of (59), and we obtain

1
γn+1

E[
∫ Γn+1

Γn
⟨∇f(Xs), b(Xs) − b(XΓn)⟩ds | XΓn ] ≤ g2(XΓn) ˜Λf,2(XΓn , γn+1),

with
g2(x) = L∥∇f∥∞M

1
2

1 (∥b(x)∥2 + ∥σ(x)∥2
F ) 1

2 (1 + ∥b(x)∥2 + ∥σ(x)∥2
F )δ,
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˜Λf,2(x, γ) = γ
1
2

(1 + ∥b(x)∥2 + ∥σ(x)∥2
F )δ

(
min

(
M

1
2

1 γ
1
2 (∥b(x)∥2 + ∥σ(x)∥2

F ) 1
2

∥x∥ − d
, 1
)

1∥x∥>d + 1∥x∥≤d

)
.

For the second term of (58), we write the matrix trace as a Frobenius inner product, and obtain a similar
equation as (58):

E[
∫ Γn+1

Γn

1
2 ⟨σσ∗(Xs),∇2f(Xs)⟩F ds | XΓn ] − γn+1

1
2 ⟨σσ∗(XΓn),∇2f(XΓn)⟩F

= 1
2E[
∫ Γn+1

Γn
⟨σσ∗(XΓn),∇2f(Xs) − ∇2f(XΓn)⟩F + ⟨σσ∗(Xs) − σσ∗(XΓn),∇2f(Xs)⟩F ds | XΓn ].

Since σ is L-Lipschitz, and using the fact that ∥σσ∗∥F ≤ ∥σ∥2
F , we have

∥σσ∗(Xs) − σσ∗(XΓn)∥F ≤ L2∥Xs −XΓn∥2 + 2L∥σ(XΓn)∥F ∥Xs −XΓn∥.

Therefore, from a similar reasoning, by using Cauchy’s inequality to the term

E[∥Xs −XΓn∥21∥Xs−XΓn∥>∥XΓn∥−d | XΓn ]

and Corollary 1 with p = 2, we obtain

1
γn+1

E[
∫ Γn+1

Γn
⟨σσ∗(Xs) − σσ∗(XΓn),∇2f(Xs)⟩F ds | XΓn ] ≤ g3(XΓn) ˜Λf,3(XΓn , γn+1),

with
g3(x) = ∥∇2f∥F,∞(2LM

1
2

1 + L2M
1
2

2 γ
1
2 )(∥b(x)∥2 + ∥σ(x)∥2

F )(1 + ∥b(x)∥2 + ∥σ(x)∥2
F )δ,

˜Λf,3(x, γ) = γ
1
2

(1 + ∥b(x)∥2 + ∥σ(x)∥2
F )δ

(
min

(
M

1
2

1 γ
1
2 (∥b(x)∥2 + ∥σ(x)∥2

F ) 1
2

∥x∥ − d
, 1
)

1∥x∥>d + 1∥x∥≤d

)
,

and
1

γn+1
E[
∫ Γn+1

Γn
⟨σσ∗(XΓn),∇2f(Xs) − ∇2f(XΓn)⟩F ds | XΓn ] ≤ g4(XΓn) ˜Λf,4(XΓn , γn+1),

with
g4(x) = |∇2f |C0,α∥σ(x)∥2

FM
α
2

1 (∥b(x)∥2 + ∥σ(x)∥2
F )α2 (1 + ∥b(x)∥2 + ∥σ(x)∥2

F )δ,

˜Λf,4(x, γ) = γ
α
2

(1 + ∥b(x)∥2 + ∥σ(x)∥2
F )δ

(
min

(
(M1γ) 2−α

2 (∥b(x)∥2 + ∥σ(x)∥2
F ) 2−α

2

(∥x∥ − d)2−α , 1
)

1∥x∥>d + 1∥x∥≤d

)
.

To conclude, we have ∥Ãγf(x) − Af(x)∥ ≤
∑4
i=1 gi(x) ˜Λf,i(x, γ). Since there is some constant C s.t. gi ≤

C(1 + ∥b∥2 + ∥σ∥2
F )ϵ(∥b∥2 + ∥σ∥2

F ) and ˜Λf,i(x, γ) satisfies (57) for all i = 1, 2, 3, 4, we have completed the
proof.

3.4 Proof of Growth control and Step Weight assumptions

Proposition 3. Let p > 0, a ∈ (0, 1], s ≥ 1, ρ ∈ [1, 2], ψ(y) = yp and ϕ(y) = ya. We assume (15) and (17).
Then for every n ∈ N, for every f ∈ D(A)0 = C3

K(Rd),

E[|f(XΓn+1) − f(XΓn)|ρ | XΓn ] ≤ Cfγ
ρ
2
n+1(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F )
ρ
2 . (60)

In other words, we have GCQ(D(A)0, gσ, ρ, ϵI) (see (6)) with gσ = (∥b∥2 + ∥σ∥2
F )

ρ
2 and ϵI(γ) = γ

ρ
2 . Moreover,

if (20) and B(ϕ)(see (24)) hold and apρ/s ≤ p+ a− 1. Then for every n ∈ N, we have

E[∥V p/s(Xγn+1) − V p/s(XΓn)∥ρ | XΓn ] ≤ Cγ
ρ
2
n+1V

p+a−1(XΓn+1). (61)

In other words, we have GCQ(V p/s, V p+a−1, ρ, ϵI) (see (6)) with ϵI(γ) = γ
ρ
2 .
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Proof. By using Corollary 1 with p = 1
2 , we know that there is n0 ∈ N s.t.

E[∥XΓn+1 −XΓn∥ | XΓn ] ≤ γ
1
2
n+1M 1

2
(∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F ) 1
2 .

The rest of proof is the same as in Lemma 3.8 in [4].

3.5 Proof of Theorem 3

The proof consists of verifying all the assumption introduced in Theorem 1 and Theorem 2.

Step 1. Mean-reverting recursive control. Since (20), B(ϕ) (see (24)) and Rp(α, β, ϕ, V ) (see (22)) hold,
it follows from Proposition 1 that RCQ,V (ψp, ϕ, pα̃, pβ, s) (see (2)) is satisfied for every α̃ ∈ (0, α) and every
s ≥ 1 such that p/s+ a− 1 > 0.

Step 2. Step weight assumption. We have SWJ J ,γ,η(V p/s) (see (8)) from assumption, and we can show
that SWJ ,γ,η(V p+a−1, ρ, ϵI) (see (7)) by Lemma 1.

Step 3. Growth control assumption. Now, we prove GCQ(F, V p+a−1, ρ, ϵI) (see (6)) for F = D(A)0 and
F = {V p/s}. We notice that ρ

2 ≤ 1, thus aρ
2 ≤ p+ a− 1. From B(ϕ) (see (18)), we obtain that

(∥b(XΓn)∥2 + ∥σ(XΓn)∥2
F )

ρ
2 ≤ C

ρ
2 V

aρ
2 (XΓn) ≤ C

ρ
2 V a+p−1(XΓn).

Then Proposition 3 shows that GCQ(F, V p+a−1, ρ, ϵI) (see (6)) for F = D(A)0 and F = {V p/s}.

Step 4. Conclusion.

1. The first part of Theorem 3 (see (26)) is a consequence of Theorem 1. We obtain from Steps 2 and 3 that
assumptions GCQ(V p/s, V p+a−1, ρ, ϵI) (see (6)), SWJ ,γ,η(V p+a−1, ρ, ϵI) (see (7)) and SWJ J ,γ,η(V p/s)
(see (8)) hold, which are the hypotheses from Theorem 1 (A) with g = V p+a−1.
Due to Step 1, assumption RCQ,V (ψp, ϕ, pα̃, pβ, s) (see (2)) is satisfied for every α̃ ∈ (0, α) and every s ≥ 1
such that p/s+ a− 1 > 0. Moreover, since LV (see (19)) holds, the hypotheses from Theorem 1 (B) are
satisfied. We thus conclude from Theorem 1 that (νηn)n∈N∗ is P− a.s.tight and (26) holds.

2. The second part of Theorem 3 comes from Theorem 2. We obtain from Steps 2 and 3 that assumptions
GCQ(D(A)0, V

p+a−1, ρ, ϵI) (see (6)) and SWJ ,γ,η(V p+a−1, ρ, ϵI) (see (7)) hold, which are the hypotheses
from Theorem 2 (A) with g = V p+a−1.
Since there is some ϵ > 0, such that gσ ≤ CV p/s+a−1, with gσ = (∥b∥2+∥σ∥2

F )1+ϵ, we have supn∈N∗ νηn(gσ) <
+∞. It follows from Proposition 2 that E (Ã, A,D0(A)) (see (4)) holds. Then the hypotheses from Theo-
rem 2 (B) hold, which leads to the conclusion.
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4
NUMERICAL EXPERIMENTS

In the previous section, we have examined the theoretical perspective. In the following, we will utilize Python
to conduct numerical experimental simulations to verify the theoretical results.

We first need to choose a suitable process which should have an invariant distribution as time t tends to
infinity. By writing our process in the following form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

we have to pick appropriate functions σ and b. One option is the Ornstein–Uhlenbeck process. Let σ be a
positive constant and b(x, y) = θ(µ− y) with θ > 0. Then, we may have

Xt ∼ N (µ+ (x0 − µ)e−θt,
σ2

2θ (1 − e−2θt)),

where we mention that its invariant distribution is N (µ, σ2/(2θ)). Thereafter, for the numerical simulation, we
take θ = 2, σ = 2 and µ = 1. Thus, the invariant distribution becomes N (1, 1).

To get a basic idea, we visualize the general properties of the Ornstein–Uhlenbeck process by showing the
following two figures.

Figure 1: Trajectory of O-U process Figure 2: Distribution of O-U process

4.1 Convergence of the Euler Scheme

We may now verify that, given f enough regular, by noting ν the invariant distribution, one can have νγn(f) →
ν(f) almost surely, where

νγn(f) := 1
Γn

n∑
k=1

γkf(XΓk−1)

with Γn =
∑n
k=1 γk and Xt the Euler Scheme, which is the theorem that we have shown.

For the numerical computation of Xt, for general functions b and σ, we use the so-called Euler Scheme.
Additionally, in order to consider γ, we define here a stochastic difference equation:

XΓi+1 −XΓi = b(Γi, XΓi)γi+1 + σ(Γi, XΓi)
√
γi+1Zi,

where (Zi)i≥0 are standard Gaussian.

18



Recursive Computation of Invariant Distribution
of Feller Process: Applications and Numerical
experiments

Finally, consider γk in order to satisfy the conditions of the theorem, we take here γk = k−α with α ∈ (0, 1),
such that γk → 0 and Γk → +∞ when k → +∞. Taking α = 0.3, 0.5 and 0.7, we can show the histogram at
n = 10000, with f(x) = x which gives us the expectation, in the figure 3.

Figure 3: Histogram of νγn(f) for different α

We may mention that its histogram looks like the normal distribution, because this process, at the time t
fix, is a Gaussian. Then, we show its convergence by increasing n in the figure 4.

Figure 4: Values of νγn(f) for different α

With these two figures, we note that α = 0.3 seems to be the best case. From the Remark 3.4 of reference
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[2], we know that, under certain conditions, the optimum is obtained at α = 1/3, which we will discuss in the
following subsection.

4.2 Rate of Convergence

When we wish to accelerate the rate of convergence, for specific problems, there are two possible cases to analyse:
adjusting γk, in particular the exponent α; and for the specific Ornstein–Uhlenbeck process, a better approach
than the Euler Scheme can be used.

4.2.1 • Choice of γk

Under the assumption that γk = k−α, we may note numerically that although α can take on all values between
(0, 1), once α takes on a value close to 0, it will lead to an explosion of constants.

Figure 5: Histogram of νγn(f) for α = 0.1 Figure 6: Histogram of νγn(f) for α = 0.3

We used here f(x) = (x − µ)2 which gives us the variance. There may be two factors taken into account,
one is that the value of Γn will become smaller when α becomes larger, which will contribute less to XT which
is close to the invariant distribution, for T given and large; on the other hand, γk will become larger when α
becomes smaller, which will reduce the fineness and cause the Euler Scheme to be different from the real one.

The solution to this problem can actually be very simple, and in order to ensure that γk is not too large
when α is small, it is sufficient to perform a translation. Specifically, we can define

γk = (k + n0)−α,

where n0 is a fixed constant. Our next step will be about the choice of α.
According to the Theorem 3.2 of reference [2], in case of diffusion process, for f of the form Ag, where A is

the infinitesimal generator (see (14)) and g is a function, the optimal α will be 1/3. More precisely, a process
is a diffusion process when both b and σ are functions of Xt itself. Taking g(x) = (x − 1)/(1 + (x − 1)2), we
calculate then

f(x) =Ag(x) = b(x)g′(x) + 1
2σ

2(x)g′′(x)

=2(1 − x) · 1 − (x− 1)2

(1 + (x− 1)2)2 + 2 · −4(x− 1)
(1 + (x− 1)2)3 = 2(1 − x)(5 − (x− 1)4)

(1 + (x− 1)2)3 .

We mention that x 7→ f(x + 1) is an odd function, hence ν(f) is exactly 0. We may take here n = 10000 and
show the normalized absolute errors in heat-map form.
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Figure 7: Normalized absolute errors of νγn(f) for different α

This heat-map figure 7 shows that the error is significantly lower around the theoretical optimal choice of α.

4.2.2 • Recursive Formula of the Ornstein–Uhlenbeck Process
The Ornstein–Uhlenbeck process can actually be simulated directly because we have a concrete solution:

Xt = µ+ (x0 − µ) exp(−θt) + σ

∫ t

0
exp(−θ(t− s))dWs.

While, it may be emphasised that since the γk is not homogeneous (it gets smaller as k gets larger), we cannot
use the conventional simulation method of dividing the time equally. Obviously, the detail we want to deal with
here is the treatment of the integral, so we want to compute the integral numerically in steps of γk.

By denoting

Ii = exp(−Γi)
∫ Γi

0
exp(θs)dWs,

we will have
exp(θΓi)Ii − exp(θΓi−1)Ii−1 =

∫ Γi

Γi−1

exp(θs)dWs.

So, if the integral is replaced by exp(θΓi−1)√γiZi, we may have the discretised recursive formula for Ii:

Ii = exp(−θγi)Ii−1 + exp(−θγi)
√
γiZi.

We can notice here that Zi is preceded by an exponent in addition to √
γi, which increases a little the speed

of convergence somewhat compared to the Euler Scheme, as we will show in the following numerical simulations.
We fix here the f : x 7→ (x− µ)2 giving the variance.

We also want to verify that νγn(f) will converge to ν(f) almost surely, and compare to the convergence of the
Euler Scheme, where Xt is replaced by Xt in the expression of νγn(f). This is proved in the previous section: for
diffusion process, there can be convergence for the direct use of the exact Xt when right conditions are satisfied.

As our functions b and σ are extremely simple affine or constant functions, the conditions for regularity are
satisfied. It is sufficient to take V (x) = x2 as the Lyapunov function to satisfy the rest of the conditions. Thus,
the theoretical proof tells us that there is indeed an almost sure convergence, which we are going to verify by
numerical simulation.
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Figure 8: Values of νγn(f) for different approach

We can notice a slight advantage of using recursive formula over Euler Scheme, most likely due to the factor
exp(−θγi). It is clear that this advantage is not obvious. This is probably because both the Euler Scheme and
the recursive formula have the same order, first-order error.

4.3 Related Application

An application of this framework interesting is to prove the almost sure Central Limit Theorem, which we can
find as the Theorem 7 of reference [3]. To simplify the conditions, we may consider the one-dimensional case.
Let (Un) be a sequence of independent and identically distributed square-integrable random variables, satisfying
E[U1] = 0 and Var(U1) = 1. Then, we have

1
logn

n∑
k=1

1
k
δ(U1+···+Uk)/

√
k → N (0, 1)

in distribution almost surely.
We now want to verify numerically this theorem. By denoting ν = N (0, 1) and νk = δ(U1+···+Uk)/

√
k, we

want to show that
1

logn

n∑
k=1

1
k
νk(f) → ν(f)

almost surely, whose form is very similar to what we have concerned if we take γk = 1/k.
We now want to verify numerically this theorem. In the numerical simulation, we may use U1 ∼ U(−

√
3,

√
3)

the uniform distribution, and take f(x) = x for the expectation and f(x) = x2 for the variance.
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Figure 9: Convergence of expectation Figure 10: Convergence of variance

We can see that the distribution becomes concentrated as N becomes larger. Since logarithmic functions do
not grow as fast as power functions, the rate of its convergence is not very fast even for large N .

4.4 Case of Non-Uniqueness

We may consider a classical example about dual potential well function. We denote

b(x) =


1, x < −3π/2,
sin x, −3π/2 ≤ x ≤ 3π/2,
−1, x > 3π/2.

One can mention that b is the negative derivative of a potential V shown below.

Figure 11: Image of function V Figure 12: Image of function b

We know that the ordinary differential equation x′ = b(x) is initial-value sensitive, converging to π if the
initial value is positive, to −π if x0 < 0, and x = 0 will always remain at the unstable point. Hence, we consider
the following stochastic differential equation

dXt = b(Xt)dt+ σdWt,

where σ can be changed. We show histograms by taking f(x) = x and α = 1/3.
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Figure 13: Histogram with σ = 0.5 Figure 14: Histogram with σ = 1.5

One can find that νγn(f) converges differently while σ changes. In particular, the limit of νγn(f) is not unique
when σ is small. Intuitively, the parameter σ can be thought of as reflecting the step size of a certain random
motion, which is difficult to move away from the local minima when the step size is small and easy to move
around the center when the step size is large.
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5
CONCLUSION

In this article, our primary focus is to comprehend a series of foundational works, apply the key theorems
presented to derive new results, and subsequently verify these results through numerical simulations. The
central objective of this study is to develop a general methodology for determining the invariant measure of a
stochastic differential equation, which enables us to achieve highly accurate approximations with the simulation
of a single trajectory, significantly reducing the space-time complexity of the algorithm. A major component
of our work also involves applying the proposed method to an alternative scheme, rigorously validating all
the assumptions to deepen our understanding of the approach. Furthermore, we have numerically investigated
optimization possibilities, such as identifying the optimal exponent to enhance convergence.

25



Recursive Computation of Invariant Distribution
of Feller Process: Applications and Numerical
experiments

REFERENCES

[1] Pagès, Gilles, and Clément Rey. Recursive computation of invariant distributions of Feller processes.
Stochastic Processes and their Applications 130.1 (2020): 328-365.

[2] Pagès, Gilles, and Clément Rey. Discretization of the Ergodic Functional Central Limit Theorem. Journal
of Theoretical Probability 36.4 (2023): 2359-2402.

[3] Lamberton, Damien, and Gilles Pages. Recursive computation of the invariant distribution of a diffusion.
(2002): 367-405.

[4] Pagès, Gilles, and Clément Rey. Recursive computation of the invariant distributions of Feller processes:
Revisited examples and new applications. Monte Carlo Methods and Applications 25.1 (2019): 1-36.

[5] Schilling, René L., and Lothar Partzsch. Brownian motion: an introduction to stochastic processes. Walter
de Gruyter GmbH & Co KG, 2014.

[6] Pagès, Gilles. Sur quelques algorithmes récursifs pour les probabilités numériques. ESAIM: Probability
and Statistics 5 (2001): 141-170.

[7] Zhang, Kelvin Shuangjian, et al. Wasserstein control of mirror langevin monte carlo. Conference on
learning theory. PMLR, 2020.

26


	Introduction
	General Framework of Recursive Computation
	Construction of empirical measure
	Assumptions
	Convergence of empirical measure

	Application to the discretization scheme of Ito diffusion
	Main result
	Recursive control
	Proof of the infinitesimal estimation
	Proof of Growth control and Step Weight assumptions
	Proof of Theorem 3

	Numerical Experiments
	Convergence of the Euler Scheme
	Rate of Convergence
	Choice of k
	Recursive Formula of the Ornstein–Uhlenbeck Process

	Related Application
	Case of Non-Uniqueness

	Conclusion

