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General Framework

ν

(Xt)t (X Γn)n

νηn (dx) =
1∑
ηk

∑n
k=1 ηkδX Γn

(dx)

Feller process numerical scheme

empirical invariant measure

a.s. weak
convergence

invariant measure

Ruikai CHEN - Zian CHEN - Tiena SORO Recursive Computation of Invariant Distribution



General Framework of recursive computation
Application to the discretization scheme of Ito diffusion

Numerical Experiments
Conclusion

Notations

(Xt)t is a Feller process with Feller semi-group (Pt)t

(X̄Γn)n is a Markov approximation of (Xt)t

V Lyapunov function

ψ test function, ϕ control function

A is the infinitesimal generator : Af = limt→0
Pt f−f

t , where f
is a continous function

Ãγ is the pseudo-generator of (X̄Γn) :

Ãγn+1f (x) =
1

γn+1
E[f (X̄Γn+1)− f (X̄Γn) | X̄Γn = x ]

D(A)0 set of f where Ãγf is well defined.
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Main Assumptions

Mean-Reverting Recursive Control :

∀x ∈ E , sup
γ∈(0,γ̄]

Ãγψ ◦ V (x) ≤ ψ ◦ V (x)

V (x)

(
β − αϕ ◦ V (x)

)
Infinitesimal Generator Approximation :

∀γ ∈ (0, γ̄], ∀f ∈ D(A), ∀x ∈ E , |Ãγf (x)− Af (x)| ≤ Λf (x , γ)

Growth Control : ∀f ∈ F

E
[∣∣f (X̄Γn+1)− E[f (X̄Γn+1)|X̄Γn ]

∣∣ρ | X̄Γn

]
≤ Cf ϵI (γn+1)g(X̄Γn)

Step Weight assumptions
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Main results

Theorem (Almost sure tightness, Identification of the limit)

Suppose s ≥ 1 and that certain assumptions hold, we have

P-a.s. sup
n∈N∗

νηn

(
Ṽψ,ϕ,s

)
< +∞,

with Ṽψ,ϕ,s =
ϕ◦V (x)ψ◦V (x)1/s

V (x) . Therefore, (νηn )n∈N∗ is a.s. tight, and

P-a.s. ∀f ∈ D(A), lim
n→+∞

νηn (Af ) = 0.

It follows that, P-a.s., every weak limiting distribution νη∞ is a
invariant measure. And if the invariant measure ν is unique, then for
all f continuous s.t. f = o(Ṽψ,ϕ,s), we have a.s. lim νηn (f ) = ν(f ).
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Ito diffusion
We consider the solution of the d-dimensional stochastic equation

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs ,

where b : Rd → Rd and σ : Rd → Rd×d .

Assume a Lipschitz condition holds for b and σ :

∃L, ∀x , y ∈ Rd , ∥b(x)− b(y)∥+ ∥σ(x)− σ(y)∥F ≤ L∥x − y∥,

which ensures the existence and uniqueness of the solution (Xt)t≥0,
(Xt)t≥0 is a Feller process with Feller semi-group

Pt f : x 7→ Ex [f (Xt)].

Notation : ∥σ∥F := Tr(σσ∗)1/2 Frobenius norm.
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Discretization scheme of Ito diffusion

When the exact solution (Xt)t≥0 is known, we can build its
empirical invariant measures with a weight sequence η := (ηn)n∈N∗

and a times grid Γn =
∑n

k=1 γk :

νηn (dx) =
1∑n

k=1 ηk

n∑
k=1

ηkδXΓk−1
(dx).

We will show that, under certain conditions, every weak limiting
distribution ν of (νηn )n∈N∗ is an invariant distribution of (Xt).
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Some crucial hypotheses

Let V : Rd → [v∗,∞), (v∗ > 0) be a Lyapunov function,
limx→∞ V (x) = +∞, and is essentially quadratic in the sense

∥∇V ∥2 ≤ CVV , ∥D2V ∥∞ < +∞.

Let ϕ : [v∗,∞) → R+ be a continuous function. Let p > 0 and
define ψp(y) = yp.

Mean-reverting assumptions

∀x , ⟨∇V (x), b(x)⟩+ 1
2
C (V , p)Tr(σσ∗(x))︸ ︷︷ ︸

≈AV (x)

≤ β − αϕ ◦ V (x)

where AV (x) := limt→0
PtV (x)−V (x)

t = limt→0
1
t (E

x [V (Xt)]− x).
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Some crucial hypotheses

Let V : Rd → [v∗,∞), (v∗ > 0) be a Lyapunov function,
limx→∞ V (x) = +∞, and is essentially quadratic in the sense

∥∇V ∥2 ≤ CVV , ∥D2V ∥∞ < +∞.

Let ϕ : [v∗,∞) → R+ be a continuous function. Let p > 0 and
define ψp(y) = yp.

Coefficient control

∀x , ∥∇V (x)∥(∥b(x)∥2 + ∥σ(x)∥2
F )

1
2 + ∥b(x)∥2 + ∥σ(x)∥2

F

≤ Cϕ ◦ V (x).

Assumptions on time steps and weights
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Key properties of Ito diffusion

Proposition (Burkholder inequality)

For all p ≥ 2, there exists Cp > 0 s.t.

E
[
sup
s≤T

∥∥∥∥∫ s

0
σ(Xu)dWu

∥∥∥∥p] ≤ CpE
[(∫ T

0
∥σ(Xu)∥2

Fdu

) p
2
]

Lemma
Suppose that p ≥ 1, we have

E
[(∫ Γn+1

Γn

∥b(Xs)∥2ds

)p

+

(∫ Γn+1

Γn

∥σ(Xs)∥2
Fds

)p ∣∣∣∣ XΓn

]
≤ Kγpn+1(∥b(XΓn)∥2p + ∥σ(XΓn)∥

2p
F ).
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Key properties of Ito diffusion
Corollary
Suppose that p > 0, then ∃n0,Mp s.t. for all n ≥ n0,

E[∥XΓn+1 − XΓn∥2p | XΓn ] ≤ Mpγ
p
n+1

(
∥b(XΓn)∥2 + ∥σ(XΓn)∥2

F

)p
.

A powerful tool for the control of quantities in the form

E[f (XΓn+1)−f (XΓn) | XΓn ] and E[
∫ Γn+1

Γn

f (Xs)ds | XΓn ]−γn+1f (XΓn).

Example (Recursive Control) :

E[ψ◦V (XΓn+1)−ψ◦V (XΓn) | XΓn ] ≤
γn+1ψ ◦ V (XΓn)

V (XΓn)
(β−αϕ◦V (XΓn)).
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Key properties of Ito diffusion

A powerful tool for the control of quantities in the form

E[f (XΓn+1)−f (XΓn) | XΓn ] and E[
∫ Γn+1

Γn

f (Xs)ds | XΓn ]−γn+1f (XΓn).

Example (Infinitesimal Estimation)

∀γ ∈ (0, γ̄], ∀f ∈ C3
K (Rd), ∀x ∈ Rd , ∥Ãγf (x)−Af (x)∥ ≤ Λf (x , γ),

with
Ãγn f (x) =

1
γn

E[f (XΓn)− f (XΓn−1) | XΓn−1 = x ].

Af (x) = ⟨b(x),∇f (x)⟩+ 1
2
Tr(σσ∗(x)∇2f (x))
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Basic Setting

The Ornstein–Uhlenbeck process under our consideration is

dXt = 2(1 − Xt)dt + 2dWt .

Its exact solution is given as

Xt = 1 − exp(−2t) + 2
∫ t

0
exp(−2(t − s))dWs ,

where one has the invariant distribution N (1, 1).

About the time grid and the weight sequence, we take here both
(γk)k in order to simplify the argument.
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Euler Scheme

A general stochastic differential equation

dXt = b(t,Xt)dt + σ(t,Xt)dWt

can be discretized as

XΓi+1 − XΓi = b(Γi ,XΓi )γi+1 + σ(Γi ,XΓi )
√
γi+1Zi ,

where (Zi )i≥0 are standard Gaussian.

Hence, one can have

νγn (f ) :=
1
Γn

n∑
k=1

γk f (XΓk−1),

where we take γk = k−α and f (x) = x to show the convergence.
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Convergnce Figures

Figure – Histogram of νγn (f ) for different α
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Convergnce Figures

Figure – Values of νγn (f ) for different α
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Rate of Convergence

In order to...

reduce the constant when f has a large growth rate and α is
small, one can add n0 to γk , i.e.

γk = (k + n0)
−α;

increase the rate of convergence, theoretically, for f of form
Ag , the best α is 1/3.

Figure – Normalized absolute errors of νγn (f ) for different α
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Recursive Formula of O-U process
Since the Ornstein-Uhlenbeck process has an exact solution, we can
verify the result from the previous section :

Figure – Values of νγn (f ) for different approach
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Almost Sure CLT
Let (Un) be a sequence of i.i.d. square-integrable random variables,
satisfying E[U1] = 0 and Var(U1) = 1, we have then

1
log n

n∑
k=1

1
k
δ(U1+···+Uk )/

√
k → N (0, 1)

in distribution almost surely.
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Case of Non-Uniqueness

Inspired by ODE x ′ = −V ′(x), we define the following SDE

dXt = −V ′(Xt)dt + σdWt ,

where σ can be changed.

Figure – Image of V Figure – Case of σ = 0.5

Its histogram can also be centered Gaussian when σ is big.
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Conclusion

Through our efforts in P1 , we ...

comprehend a series of foundational works ;

apply key theorems presented to derive new result ;

verify the result through numerical simulations.

In the P2, we will ...

consider the rate of convergence from theoretical perspectives ;

explore more things.
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